- **1.** Find big- Θ estimates for the following positive-real-valued increasing functions f(n).
 - (a) $f(n) = 125f(n/4) + 2n^3$ whenever $n = 4^t$ for $t \ge 1$.
 - **(b)** $f(n) = 125f(n/5) + 2n^3$ whenever $n = 5^t$ for $t \ge 1$.
 - (c) $f(n) = 125f(n/6) + 2n^3$ whenever $n = 6^t$ for $t \ge 1$.
- 2. Let the running time of a recursive algorithm satisfy the recurrence

 $T(n) = aT(n/b) + cn^d \log^e n$

for some $e \in \mathbb{N}$. Let $t = \log_b a$. Deduce the running time T(n) in the big- Θ notation for the three cases: (i) t < d, (ii) t > d, and (iii) t = d.

- 3. Solve for the following divide-and-conquer recurrence: $T(n) = 2T(n/2) + \frac{n}{\log n}$.
- **4.** Let *t* be the number of one-bits in *n*. Suppose that the running time of a divide-and-conquer algorithm satisfies the recurrence T(n) = 2T(n/2) + nt. When *n* is a power of 2, we have t = 1, so T(n) = 2T(n/2) + nt. Why does this not imply that $T(n) = \Theta(n \log n)$? Find a correct estimate for T(n) in the big-O notation. (**Remark:** There exist algorithms whose running times depend on *t*. Example: Left-to-right exponentiation.)
- 5. Let the running time of a recursive algorithm satisfy the recurrence $T(n) = aT(\sqrt{n}) + h(n)$. Deduce the running time T(n) in the big- Θ notation for the cases: (i) $h(n) = n^d$ for some $d \in \mathbb{N}$, and (ii) $h(n) = \log^d n$ for some $d \in \mathbb{N}_0$.
- 6. [*Karatsuba multiplication*] You want to multiply two polynomials a(x) and b(x) of degree (or degree bound) n 1. Each of the input polynomials is stored in an array of *n* floating-point variables. The product c(x) = a(x)b(x) is of degree (at most) 2n 2, and can be stored in an array of size 2n 1.

(a) Use the school-book multiplication method to compute c(x) (use the convolution formula). Deduce the running time of this algorithm.

(b) Let $t = \lfloor n/2 \rfloor$. Divide the input polynomials as $a(x) = x^t a_{hi}(x) + a_{lo(x)}$ and $b(x) = x^t b_{hi}(x) + b_{lo(x)}$, where each part of *a* and *b* is a polynomial of degree $\leq t - 1$. But then

$$c(x) = a_{hi}(x)b_{hi}(x)x^{2t} + \left(a_{hi}(x)b_{lo}(x) + a_{lo}(x)b_{hi}(x)\right)x^{t} + a_{lo}(x)b_{lo}(x)$$

The obvious recursive algorithm uses this formula to compute c(x) by making four recursive calls on polynomials of degrees $\leq t - 1$. Deduce the running time of this algorithm.

- (c) Reduce the number of recursive calls to three (how?). Deduce the running time of this algorithm.
- 7. In the quick-sort algorithm, two recursive calls are made on arrays of sizes *i* and n i 1 for some $i \in \{0, 1, 2, ..., n 1\}$ (assuming that there are no duplicates in the input array). Suppose that all these values of *i* are equally likely. Deduce the expected running time of quick sort under these assumptions.
- 8. Suppose that an algorithm, upon an input of size *n*, recursively solves two instances of size n/2 and three instances of size n/4. Let the "divide + combine" time be h(n). Find the running times of the algorithm if

(a)
$$h(n) = 1$$
, (b) $h(n) = n$, (c) $h(n) = n^2$, (d) $h(n) = n^3$.

- 9. Use the method of recursion trees to derive the running times of the following algorithms.
 - (a) Majority finding: T(n) = T(n/2) + cn, where c is a positive constant.
 - (b) Stooge sort: T(n) = 3T(2n/3) + c, where c is a positive constant.
- **10.** Deduce the running times of divide-and-conquer algorithms in the big- Θ notation if their running times satisfy the following recurrence relations.
 - (a) T(n) = T(2n/3) + T(n/3) + 1.(b) T(n) = T(2n/3) + T(n/3) + n.(c) $T(n) = T(2n/3) + T(n/3) + n \log n.$ (d) $T(n) = T(2n/3) + T(n/3) + n^2.$

11. Deduce the running times of divide-and-conquer algorithms in the big- Θ notation if their running times satisfy the following recurrence relations.

(a)
$$T(n) = T(n/5) + T(7n/10) + 1$$

(c) $T(n) = T(n/5) + T(7n/10) + n\log n$.

(b)
$$T(n) = T(n/5) + T(7n/10) + n$$

(d) $T(n) = T(n/5) + T(7n/10) + n^2$

- 12. Consider the following variant of stooge sort for sorting an array A of size n.
 - 1. Recursively sort the first $\lceil 3n/4 \rceil$ elements of *A*.
 - 2. Recursively sort the last $\lceil 3n/4 \rceil$ elements of *A*.
 - 3. Recursively sort the first $\lceil n/2 \rceil$ elements of *A*.
 - (a) Prove that this algorithm correctly sorts A.
 - (b) Derive the asymptotic running time of this algorithm.
- **13.** Define two binary operations on \mathbb{Z} as $a \oplus b = a + b + 1$ and $a \odot b = a + b + ab$. Prove that $(\mathbb{Z}, \oplus, \odot)$ is a ring. What are the additive and multiplicative identities in this ring? What are the units in this ring?
- 14. The set of *Gaussian integers* is defined as $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[i]$ is an integral domain. What are the units in this ring? Also define the set $\mathbb{Q}[i] = \{a + ib \mid a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[i]$ is a field.
- **15.** Prove that $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ is an integral domain. Argue that $\mathbb{Z}[\sqrt{5}]$ contains infinitely many units. Prove that $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ is a field.
- **16.** Prove that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] = \left\{a + \left(\frac{1+\sqrt{5}}{2}\right)b \mid a, b \in \mathbb{Z}\right\}$ is an integral domain. Argue that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ contains infinitely many units. Prove that $\mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right] = \left\{a + \left(\frac{1+\sqrt{5}}{2}\right)b \mid a, b \in \mathbb{Q}\right\}$ is a field. Prove/Disprove the following equalities as sets: (a) $\mathbb{Z}[\sqrt{5}] = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, (b) $\mathbb{Q}[\sqrt{5}] = \mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right]$.
- 17. Prove that $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ is an integral domain. Find all the units in this ring. Prove that $\mathbb{Q}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Q}\}$ is a field.
- **18.** Let $n \ge 2$, and let $(R_i, +_i, \times_i)$ be rings for i = 1, 2, 3, ..., n. Define two operations on the Cartesian product $R = R_1 \times R_2 \times \cdots \times R_n$ as $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ and $(a_1, a_2, ..., a_n) \cdot (b_1, b_2, ..., b_n) = (a_1 \times b_1, a_2 \times b_2, ..., a_n \times b_n)$ (component-wise operations).
 - (a) Prove that $(R, +, \cdot)$ is a ring.
 - (b) If each R_i is commutative, prove that R is commutative too.
 - (c) If each R_i is with identity, prove that R is with identity too. What are the units of R in this case?
 - (d) Prove/Disprove: If each R_i is an integral domain, then R is also an integral domain.
 - (e) Prove/Disprove: If each R_i is a field, then R is also a field.
- **19.** Let *R* be the set of all functions $\mathbb{Z} \to \mathbb{Z}$. For $f, g \in R$, define (f+g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n) for all $n \in \mathbb{Z}$.
 - (a) Prove that *R* is a commutative ring with identity under these two operations.
 - (b) What are the units of *R*?
 - (c) Is *R* an integral domain?
- **20.** Let *R* be the set of all functions $\mathbb{Z} \to \mathbb{Z}$. For $f, g \in R$, define (f+g)(n) = f(n) + g(n) and (fg)(n) = f(g(n)) for all $n \in \mathbb{Z}$. Prove/Disprove: *R* is a ring under these two operations.
- **21.** Let *R* be the set of all *n*-bit words for some $n \in \mathbb{N}$. Which of the following is/are ring(s)?
 - (a) *R* under bitwise OR and AND operations.
 - (b) *R* under bitwise XOR and AND operations.
- **22.** Let *R* be an integral domain. A non-zero non-unit $p \in R$ is called *prime* in *R* if p|(ab) implies p|a or p|b (for all $a, b \in R$). A non-zero non-unit $p \in R$ is called *irreducible* if p = ab implies that either *a* or *b* is a unit.
 - (a) What are the primes of \mathbb{Z} ? What are the irreducible elements of \mathbb{Z} ?
 - (b) Prove that every prime is also irreducible.
 - (c) Demonstrate by an example that all irreducible elements need not be prime.