1. Consider a linear recurrence relation with constant coefficients having characteristic equation $(x - r)^{\mu}$ for some $\mu \in \mathbb{N}$, and with a non-homogeneous part $f(n) = n^t r^n$. Using the theory of generating functions, prove that the particular solution for this recurrence relation is of the form

$$n^{\mu}(u_{t}n^{t}+u_{t-1}n^{t-1}+\cdots+u_{2}t^{2}+u_{1}t+u_{0})r^{n}.$$

- 2. Foosia and Barland play a long series of ODI matches. In the first match, Foosia bats first. After that, the team that wins a match must bat first in the next match. For each team, the probability of win is p if it bats first. Assume that $0 . Find the probability <math>p_n$ that Foosia wins the *n*-th match. What is $\lim p_n$?
- **3.** Pell numbers are defined as $P_0 = 0$, $P_1 = 2$, $P_n = 2P_{n-1} + P_{n-2}$ for $n \ge 2$.
 - (a) Deduce a closed-form formula for *F*
 - (a) Deduce a closed-form formula for P_n . (b) Prove that $\begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^n$ for all $n \ge 1$. (c) Prove that $\lim_{n \to \infty} \frac{P_{n-1} + P_n}{P_n} = \sqrt{2}$. (d) Prove that if P_n is prime, then n is also prime.
- 4. The Pell–Lucas numbers are defined as $Q_0 = Q_1 = 2$, $Q_n = 2Q_{n-1} + Q_{n-2}$ for $n \ge 2$.
 - (a) Deduce a closed-form formula for Q_n .
 - (**b**) Prove that $Q_n = P_{2n}/P_n$ for all $n \ge 1$.
- **5.** Let $a_0 = 1$, and $a_n = \frac{5}{2}a_{n-1} a_{n-2}$ for all $n \ge 2$. Find a_1 such that the sequence a_n converges.
- 6. A set of natural numbers is called *selfish* if it contains its size as a member. Let s_n denote the number of selfish subsets of $\{1, 2, 3, ..., n\}$ for $n \ge 1$. Develop a recurrence relation for s_n , and solve it.
- 7. Let us call a selfish set A minimal if no proper subset of A is selfish. Let S_n denote the number of minimal selfish subsets of $\{1, 2, 3, ..., n\}$. Develop a recurrence relation for S_n , and solve it.
- 8. The triangular numbers are defined as $t_n = 1 + 2 + 3 + \dots + n = n(n+1)/2$ for $n \ge 0$. Define $a_n = \sum_{i=0}^n t_i$ for $n \ge 0$. Find a recurrence relation for a_n , and solve it.
- **9.** Let $a_n, n \ge 0$, be the count of strings over $\{0, 1, 2\}$ containing no consecutive 1's and no consecutive 2's. Find a recurrence relation for a_n , and solve it.
- 10. Let a_n , $n \ge 0$, denote the number of binary strings of length *n*, not containing the pattern 101. Develop a recurrence relation for a_n , and solve it.
- **11.** Let D_n , $n \ge 1$, denote that number of derangements (permutations without fixed points) of 1, 2, 3, ..., n.
 - (a) Prove that $D_n = (n-1)(D_{n-1} + D_{n-2})$ for all $n \ge 3$.
 - (b) Deduce that $D_n = nD_{n-1} + (-1)^n$ for all $n \ge 3$.
 - (c) Solve for D_n .
- **12.** Let $a_n, n \ge 1$, satisfy $a_1 = 1$, and $a_n = \begin{cases} 2a_{n-1} & \text{if } n \text{ is odd} \\ 2a_{n-1} + 1 & \text{if } n \text{ is even} \end{cases}$ for $n \ge 2$. Develop a recurrence relation for a_n , that holds for both odd and even n, and solv
- **13.** Solve the recurrence relation: $a_0 = 1$, $a_1 = 2$, $a_n = a_{n-1} + 2a_{n-2} + n^2 + 2^n$ for $n \ge 2$.
- 14. Solve the recurrence relation: $a_0 = 1$, $a_1 = 2$, $a_n = 4a_{n-2} + 2^n + n3^n$ for $n \ge 2$.
- **15.** Solve the recurrence relation: $a_0 = 0$, $a_1 = 1$, $a_2 = 2$, $a_n = a_{n-1} + a_{n-2} a_{n-3} + n^2 + n + (-1)^n$ for $n \ge 3$.

16. Solve the recurrence relation: $a_0 = 1$, $a_1 = 2$, $a_2 = 4$, and $a_n = \frac{2a_{n-1}^3}{a^2}$ for $n \ge 3$.

- **17.** Solve the recurrence relation $na_n = (n+1)a_{n-1} + 2n$ for $n \ge 1$, with the initial condition $a_0 = 0$.
- **18.** Solve the recurrence relation $a_n = na_{n-1} + n(n-1)a_{n-2} + n!$ for $n \ge 2$, with $a_0 = 0$, $a_1 = 1$.
- **19.** Solve the recurrence relation $a_0 = \frac{2}{3}$, and $a_n = 2a_{n-1}^2 1$ for $n \ge 1$.
- **20.** A sequence a_n is defined recursively as $a_1 = 1$, $a_2 = 2$, $a_3 = 24$, and $a_n = \frac{6a_{n-1}^2a_{n-3} 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}$ for $n \ge 4$. Prove that a_n is an integer for all $n \in \mathbb{N}$.

21. Consider the recurrence relation $a_n = a_{n-1} + 3a_{n-2} - a_{n-3}$ for $n \ge 3$. Find a matrix A such that $\begin{pmatrix} a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} a_0 \\ a_5 \end{pmatrix}$

$$A\begin{pmatrix}a_1\\a_2\end{pmatrix}$$
. Express $\begin{pmatrix}a_{3n+1}\\a_{3n+2}\end{pmatrix}$ in terms of A and a_0, a_1, a_2 , for all $n \in \mathbb{N}_0$.

- **22.** So far, we have solved recurrence relations. In this exercise, we reverse this process, that is, from a sequence, we generate a recurrence relation, of which the given sequence is a solution. We concentrate only on linear recurrence relations with constant coefficients (homogeneous/non-homogeneous). Solve the following parts for the given sequences with the orders of the recurrence relations as specified.
 - (a) $(2+\sqrt{3})^n + (2-\sqrt{3})^n$, order two.
 - (**b**) $2^n + 3^n$, order two.
 - (c) $2^n + 3^n$, order one.
 - (d) $2^n + n3^n$, order two.
 - (e) $2^n + n3^n$, order one.
 - (f) $2^n + n3^n + n^2 4^n$, order three.
 - (g) $2^n + n3^n + n^2 4^n$, order two.
 - (**h**) $2^n + n3^n + n^2 4^n$, order one.
- **23.** Let $A(x) = 1 + \frac{1}{\sqrt{1-2x}}$ be the (ordinary) generating function of a sequence $a_n, n \ge 0$. Develop a recurrence relation for the sequence.
- **24.** Let a_n denote the number of strings *w* of length *n* over the alphabet $\{A, C, G, T\}$ such that the number of *T* in *w* is a multiple of 3. Find a closed-form expression for a_n .
- **25.** How many lines are printed by the call f(n) for an integer $n \ge 0$?

```
void f ( int n )
{
    int m;
    printf("Hi\n");
    m = n - 1;
    while (m >= 0) { f(m); m -= 2; }
}
```

26. How many lines are printed by the call g(n,0,0) for an integer $n \ge 0$?

```
void g ( int n, int i, int flag )
{
    if (i == n) { printf("Hola\n"); return; }
    g(n, i+1, flag); g(n, i+1, flag); g(n, i+1, flag);
    if (flag == 0) g(n, i+1, 1);
}
```

- **27.** (a) How many strings of length *n* over the alphabet $\{A, C, G, T\}$ are there, in which *T* never appears after *A*? Notice that there is no restriction on the appearances of *T* before the first occurrence of *A*.
 - (b) Modify the function g() of the last exercise so as to print precisely the strings of Part (a).
- **28.** How many strings of length *n* over the alphabet $\{A, C, G, T\}$ are there, in which the pattern *TT* (two consecutive *T*'s) never appears after *A*? Note that *TT* may appear before the first occurrence of *A*, and that single isolated *T*'s may appear after *A*.