- **1.** Let *A*, *B* be sets. Prove or disprove:
 - (a) If A is countable and $A \subseteq B$, then B is countable.
 - (b) If A is uncountable and $A \subseteq B$, then B is uncountable.
 - (c) If A and B are countable, then $A \cap B$ is countable.
 - (d) If A and B are uncountable, then $A \cap B$ is uncountable.
- **2.** (a) Prove that the set of all finite subsets of \mathbb{N} is countable.
 - (b) Conclude that the set of all infinite subsets of \mathbb{N} is uncountable.
- **3.** Let *A* be a finite set.
 - (a) Prove that the set of all functions $A \to \mathbb{N}$ is countable.
 - (b) Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is uncountable.
 - (c) Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is equinumerous with \mathbb{R} .
- 4. (a) Let $\mathbb{Z}[X]$ denote the set of polynomials in one variable X and with integer coefficients. Prove that $\mathbb{Z}[X]$ is countable.

(b) Let k be a fixed positive integer. Prove that the set $\mathbb{Z}[X_1, X_2, \dots, X_k]$ of multivariate polynomials with integer coefficients is countable.

(c) Prove that the set $\mathbb{Z}[X_1, X_2, \dots, X_k, \dots]$ of polynomials with countably infinite variables and with integer coefficients is countable.

Note: A polynomial contains, by definition, only finitely many non-zero terms. Moreover, each term is required to contain only finitely many variables with non-zero exponents.

- **5.** A real or complex number α is called *algebraic* if $f(\alpha) = 0$ for some non-zero univariate polynomial f(X) with integer coefficients. Let \mathbb{A} denote the set of all algebraic numbers. We have $\mathbb{A} \subseteq \mathbb{C}$.
 - (a) Prove that \mathbb{A} is countable.
 - (b) Conclude that there are uncountably many transcendental numbers.
- 6. Let f(X,Y) be a non-zero bivariate polynomial with integer coefficients. Let \mathbb{V} denote the set of all pairs $(\alpha,\beta) \in \mathbb{C}^2$ such that $f(\alpha,\beta) = 0$. Prove or disprove: \mathbb{V} is countable.
- 7. Provide explicit bijections between the following pairs of sets.
 - (a) The sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
 - (b) The set of rational numbers in the real interval [0,1) and the set \mathbb{Q} of all rational numbers.
 - (c) The set of irrational numbers in the real interval [0,1) and the set of all irrational numbers.
 - (d) The real interval [0,1) and \mathbb{R} .
 - (e) The real interval (0,1) and \mathbb{R} .
 - (f) The real intervals [0,1) and [a,b) for any $a, b \in \mathbb{R}$, a < b.
 - (g) The real intervals [0,1) and (0,1).
 - (h) The real intervals [0,1] and (0,1).
- **8.** Let *A*, *B* be sets, where *A* is equinumerous with \mathbb{R} and *B* is equinumerous with \mathbb{N} .
 - (a) Prove that $A \cup B$ is equinumerous with \mathbb{R} .
 - (b) Prove that the Cartesian product $A \times B$ is equinumerous with \mathbb{R} .
- **9.** Prove that the set $\{a + ib \mid a, b \in \mathbb{Z}\}$ of Gaussian integers is countable.
- 10. Prove that the real interval [0,1) is equinumerous with the unit square $S = \{x + iy \mid x, y \in [0,1)\}$ in the complex plane.
- 11. Provide a diagonalization argument to prove that the set *A* of all infinite bit sequences is uncountable.

12. (a) Prove that the set $\mathbb{Q}[[X]]$ of all power series with rational coefficients is uncountable.

(b) Prove that the set $\mathbb{Q}(X) = \{f(X)/g(X) \mid g(X) \neq 0\}$ of all rational functions with rational coefficients is countable.

(c) Conclude that $\mathbb{Q}[[X]]$ contains a power series which is not the power series expansion of any rational function in $\mathbb{Q}(X)$. Can you identify any such power series explicitly?

- 13. Prove that the union of two sets each equinumerous with $\mathbb R$ is again equinumerous with $\mathbb R$
- 14. Prove that the set of all permutations of \mathbb{N} is not countable.
- **15.** Let *A* be a set of size ≥ 2 (*A* may be infinite). Modify the diagonalization proof to establish that there cannot exist a bijection between *A* and the set of all *non-empty* subsets of *A*.
- **16.** Let $S = (s_1, s_2, s_3, ...)$ and $T = (t_1, t_2, t_3, ...)$ be two infinite bit sequences. We say that *S* and *T* have the *same tail* if there exists $N \in \mathbb{N}$ such that $s_n = t_n$ for all $n \ge N$. Prove that for any given sequence *S*, the set of sequences having the same tail as *S* is countable.
- **17.** Consider the relation ρ on \mathbb{R} as $a \rho b$ if and only if $a b \in \mathbb{Q}$.
 - (a) Prove that ρ is an equivalent relation.
 - (b) Prove that each equivalence class of ρ is countably infinite.
 - (c) Conclude that the set A/ρ of equivalence classes is uncountable.
- **18.** A subset $S \subseteq \mathbb{R}$ is called *bounded* if S has both a lower bound and an upper bound in \mathbb{R} . Which of the following sets is/are countable/uncountable? Why?
 - (a) The set of all bounded subsets of \mathbb{Z} .
 - (b) The set of all bounded subsets of \mathbb{Q} .
 - (c) The set of all bounded subsets of \mathbb{R} .
- **19.** [*Cantor set*] Start with the real interval I = [0, 1]. Remove the open middle one-third $(\frac{1}{3}, \frac{2}{3})$ from [0, 1]. This leaves us with two closed intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$. Remove the open middle one-thirds of these two intervals, that is, $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$. The portion of *I* that remains now consists of the four closed intervals $[0, \frac{1}{9}], [\frac{2}{9}, \frac{1}{3}], [\frac{2}{3}, \frac{7}{9}]$, and $[\frac{8}{9}, 1]$. Again, remove the open middle one-thirds of these four intervals, leaving eight closed subintervals in *I*. Repeat this process infinitely often. Let *C* be the subset of *I* that remains after this infinite process. Prove that *C* is uncountable.

Note: The cantor set *C* is one of the first explicitly constructed examples of *fractal sets*.

20. Repeat Cantor's process of the last exercise with the exception that you remove the closed middle one-thirds of the remaining intervals. That is, in the first step, you remove $[\frac{1}{3}, \frac{2}{3}]$, in the second step, you remove $[\frac{1}{9}, \frac{2}{9}]$ and $[\frac{7}{9}, \frac{8}{9}]$, and so on. Now, let *D* be the subset of I = [0, 1], that remains after this infinite process. Evidently, *D* is a proper subset of *C*. Is *D* uncountable too?