- **1.** Let *A* be the set of all non-empty finite subsets of \mathbb{Z} . Define a relation ρ on *A* as: $U \rho V$ if and only if $\min(U) = \min(V)$. Also define the relation σ on *A* as: $U \sigma V$ if and only if $\min(U) \leq \min(V)$. Finally, define a relation τ on *A* as: $U \tau V$ if and only if either U = V or $\min(U) < \min(V)$.
 - (a) Prove that ρ is an equivalence relation on A.
 - (b) Identify good representatives from the equivalence classes of ρ .
 - (c) Define a bijection between the quotient set A/ρ and \mathbb{Z} .
 - (d) Prove or disprove: σ is a partial order on A.
 - (e) Prove or disprove: τ is a partial order on A.
- **2.** Let $f: A \to B$ be a function and σ an equivalence relation on *B*. Define a relation ρ on *A* as: $a \rho a'$ if and only if $f(a) \sigma f(a')$.
 - (a) Prove that ρ is an equivalence relation on A.
 - (b) Define a map $\overline{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that f is well-defined.
 - (c) Prove that \overline{f} is injective.
 - (d) Prove or disprove: If f is a bijection, then so also is \overline{f} .
 - (e) Prove or disprove: If \overline{f} is a bijection, then so also is f.
- **3.** Let $f : A \to B$ be a function, ρ an equivalence relation on A, and σ an equivalence relation on B. Suppose further that if $a \rho a'$, then $f(a) \sigma f(a')$. Define the map $\overline{f} : A/\rho \to B/\sigma$ as $\overline{f}([a]_{\rho}) = [f(a)]_{\sigma}$. Argue that \overline{f} is well-defined. Prove or disprove the following statements.
 - (a) \bar{f} is injective.
 - (b) If f is a bijection, then so also is \overline{f} .
 - (c) If \overline{f} is a bijection, then so also is f.
- **4.** Let $f: A \to B$ be a function, ρ an equivalence relation on A, and σ an equivalence relation on B. Suppose further that if $f(a) \sigma f(a')$, then $a \rho a'$. Show by an explicit example that the association $\overline{f}: A/\rho \to B/\sigma$ given by $\overline{f}([a]_{\rho}) = [f(a)]_{\sigma}$ is not necessarily a function.
- **5.** Define the relation ρ on \mathbb{R} as: $a \rho b$ if and only if $a b \in \mathbb{Z}$.
 - (a) Prove that ρ is an equivalence relation on \mathbb{R} .
 - (b) Find good representatives for the equivalence classes of ρ .
 - (c) Provide an explicit bijection between \mathbb{R}/ρ and the real interval (3,5].
- 6. Let m, n be positive integers. Prove that the assignment $f : \mathbb{Z}_m \to \mathbb{Z}_n$ taking $[a]_m \mapsto [a]_n$ is well-defined if and only if m is an integral multiple of n.
- 7. [*Genesis of rational numbers*] Define a relation ρ on A = Z × (Z \ {0}) as (a,b) ρ (c,d) if and only if ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set Q of rational numbers. In abstract algebra, we say that Q is the *field of fractions* of the integral domain Z. The equivalence class [(a,b)] is conventionally denoted by ^a/_b.
- 8. [*Genesis of real numbers*] An infinite sequence $a_1, a_2, a_3, ...$ of rational numbers is called a *Cauchy sequence* if given any real $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|a_m a_n| < \varepsilon$ for all $m, n \ge N$. Let C denote the set of all Cauchy sequences of rational numbers.
 - (a) Prove that any Cauchy sequence converges, that is, has a limit.
 - (b) Establish that the limit of a Cauchy sequence may be irrational.
 - (c) Define a relation ρ on C as $S \rho T$ if and only if $\lim S = \lim T$. Prove that ρ is an equivalence relation.
 - (d) Convince yourself that C/ρ is essentially the set \mathbb{R} of real numbers. This process of the generation of \mathbb{R} from \mathbb{Q} is called *completion*. Another method of defining \mathbb{R} uses *Dedekind cuts*.
- **9.** Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but glb(S) does not exist.

- **10.** Let ρ be a total order on A. We call ρ a *well-ordering* of A if every non-empty subset of A contains a least element. Which of the following sets is/are well-ordered under the standard \leq relation: \mathbb{N} , \mathbb{Z} , \mathbb{Q}^+ , \mathbb{R} ?
- 11. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.
 - (a) Define a relation ρ on A as $(a,b) \rho(c,d)$ if and only if $a \leq c$ or $b \leq d$. Prove or disprove: ρ is a well-ordering of A.

(b) Define a relation σ on A as $(a,b) \sigma(c,d)$ if and only if $a \leq c$ and $b \leq d$. Prove or disprove: σ is a well-ordering of A.

(c) Define a relation \leq_L on *A* as $(a,b) \leq_L (c,d)$ if either (i) a < c or (ii) a = c and $b \leq d$. Prove that \leq_L is a well-ordering of *A*.

- (d) Prove or disprove: An infinite subset of A may contain a maximum element with respect to \leq_L .
- **12.** A *string* is a finite ordered sequence of symbols from a finite alphabet. We start with a predetermined total ordering of the alphabet, and then define the usual dictionary order on strings. Prove that this dictionary order (called *lexicographic ordering*) is a total ordering. Is it also a well-ordering?
- **13.** Define a relation \leq_{DL} on $A = \mathbb{N} \times \mathbb{N}$ as follows. Take $(a,b), (c,d) \in A$ and call $(a,b) \leq_{DL} (c,d)$ if either (i) a+b < c+d, or (ii) a+b = c+d and $a \leq c$.
 - (a) Prove that \leq_{DL} is a partial order on *A*.
 - (b) Prove that \leq_{DL} is a total order on A.
 - (c) Is A well-ordered by \leq_{DL} ?
 - (d) Prove or disprove: An infinite subset of A may contain a maximum element.

Note: The ordering \leq_{DL} on *A* is called the *degree-lexicographic ordering*. Identify $(a,b) \in A$ with the monomial $X^a Y^b$. First, order monomials with respect to their degrees. For two monomials of the same degree, apply lexicographic ordering. For example, $XY^3 \leq_{DL} Y^5$ and $XY^3 \leq_{DL} X^2 Y^2$.

- **14.** Generalize the degree-lexicographic ordering on \mathbb{N}^n for any fixed $n \ge 3$.
- **15.** Consider the following relation ρ on the set \mathbb{Q}^+ of all positive rational numbers. Take $a/b, c/d \in \mathbb{Q}^+$ with gcd(a,b) = gcd(c,d) = 1. Call $(a/b)\rho(c/d)$ if and only if either (i) a+b < c+d or (ii) a+b = c+d and $a \leq c$. Prove that ρ is a total order. Prove that \mathbb{Q}^+ is well-ordered by ρ .
- **16.** Construct a well-ordering of \mathbb{Q} .
- **17.** Let *A* be the set of all functions $\mathbb{N} \to \mathbb{N}$. For $f, g \in A$, define $f \leq g$ if and only if $f(n) \leq g(n)$ for all $n \in \mathbb{N}$. prove that \leq is a partial order on *A*. Is \leq also a total order?
- **18.** Let *A* be the set of all functions $\mathbb{N}_0 \to \mathbb{R}^+$.
 - (a) Define a relation Θ on A as $f \Theta g$ if and only if $f = \Theta(g)$. Prove that Θ is an equivalence relation.
 - (b) Define a relation O on A as f O g if and only if f = O(g). Argue that O is not a partial order.

Define a relation O on A/Θ as [f] O [g] if and only if f = O(g).

- (c) Establish that the relation O is well-defined.
- (d) Prove that O is a partial order on A/Θ .
- (e) Prove or disprove: O is a total order on A/Θ .
- (f) Prove or disprove: A/Θ is a lattice under O.
- **19.** Let *k* be a fixed positive integer. Define a relation \leq on $A = \mathbb{Z}^k$ as: $(a_1, a_2, \dots, a_k) \leq (b_1, b_2, \dots, b_k)$ if and only if $a_i \leq b_i$ for all $i = 1, 2, \dots, k$. Prove that *A* is a lattice under this relation.
- **20.** Let *A* be a poset under the relation ρ . Prove or disprove:
 - (a) If ρ is a total order, then A is a lattice.
 - (b) If A is a lattice, then ρ is a total order.
- **21.** Let *A* be a poset. We call *A* a *meet-semilattice* (resp. *join-semilattice*) if glb(a,b) (resp. lub(a,b)) exists for all $a, b \in A$. *A* is a lattice if and only if it is both a meet-semilattice and a join-semilattice. Give examples of:
 - (a) A meet-semilattice which is not a lattice.
 - (b) A join-semilattice which is not a lattice.