
CS21001 Discrete Structures

Tutorial 3

1. Let S(m,n) be the Stirling numbers of the second kind. Let us define falling factorials as

xn = x(x−1)(x−2) · · ·(x−n+1).

Prove the identity xm =
m

∑
n=0

S(m,n)xn.

2. Prove the identity S(m,n) =
m

∑
r=n−1

(

m

r

)

S(r,n−1).

3. The n-th Bell number is defined as the total number of partitions of an n-set (into any number of parts), so

Bn =
n

∑
k=0

S(n,k).

Prove the identity Bn+1 =
n

∑
k=0

(

n

k

)

Bk.

4. Let s(n,m) denote the number of permutations of 1,2,3, . . . ,n, that have exactly m cycles. For example, the

permutation 3,1,6,8,2,5,7,4 (for n = 8) has three cycles (1,3,6,5,2),(4,8),(7). The numbers s(n,m) are

called Stirling numbers of the first kind. Prove that s(m,n) = s(m−1,n−1)+(m−1)s(m−1,n).

5. Define the rising factorials as

xm = x(x+1)(x+2) · · ·(x+m−1).

Prove the identity xm =
m

∑
n=0

s(m,n)xn. How can you express the falling factorial xm in terms of the Stirling

numbers of the first kind?

6. Let f : A → B be a function. Prove the following assertions.

(a) S ⊆ f−1( f (S)) for every S ⊆ A. Give an example where the inclusion is proper.

(b) f is injective if and only if S = f−1( f (S)) for every S ⊆ A.

(c) f ( f−1(T ))⊆ T for every T ⊆ B. Give an example where the inclusion is proper.

(d) f is surjective if and only if f ( f−1(T )) = T for every T ⊆ B.

(e) f ( f−1( f (S))) = f (S) for all S ⊆ A.

(f) f−1( f ( f−1(T ))) = f−1(T ) for all T ⊆ B.

7. Let f : A → B and g : B →C be functions.

(a) Prove that if the function g◦ f : A →C is injective, then f is injective.

(b) Give an example in which g◦ f is injective, but g is not injective.

(c) Prove that if g◦ f is surjective, then g is surjective.

(d) Give an example in which g◦ f is surjective, but f is not surjective.

8. A function f : Z→ Z is called nilpotent if for some n ∈ N we have f n(a) = 0 for all a ∈ Z.

(a) Give an example of a non-constant nilpotent function.

(b) Prove or disprove: The function f (a) = ⌊|a|/2⌋ is nilpotent.

9. For a function f : A → B, define a function F : P(A)→ P(B) as F (S) = f (S) for all S ⊆ A. Prove that:

(a) F is injective if and only if f is injective.

(b) F is surjective if and only if f is surjective.

(c) F is bijective if and only if f is bijective.
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10. A function f : R → R is called monotonic increasing if f (a) 6 f (b) whenever a 6 b. It is called strictly

monotonic increasing if f (a) < f (b) whenever a < b. One can define monotonic decreasing and strictly

monotonic decreasing functions in analogous ways.

(a) Prove that a strictly monotonic increasing function is injective.

(b) Demonstrate that an injective function R→ R need not be strictly increasing or strictly decreasing.

(c) Prove that a continuous injective function R→ R is either strictly increasing or strictly decreasing.

11. Let x ∈ R and m,n ∈ N. Prove the following assertions about the floor and ceiling functions.

(a)

⌈ x

n

⌉

=

⌊

x+n−1

n

⌋

.

(b)

⌊⌊ x

m

⌋

/n
⌋

=
⌊ x

mn

⌋

and
⌈⌈ x

m

⌉

/n
⌉

=
⌈ x

mn

⌉

.

(c) ⌊mx⌋= ⌊x⌋+
⌊

x+
1

m

⌋

+

⌊

x+
2

m

⌋

+ · · ·+
⌊

x+
m−1

m

⌋

.

12. Let A be the set of all non-empty finite subsets of Z. Define a relation τ on A as: U τ V if and only if either

U =V or min(U)< min(V ). Prove or disprove: τ is a partial order on A.

13. Let A be the set of all functions R→ R. Define relations ρ,σ ,τ on A as follows.

f ρ g if and only if f (a)6 g(a) for all a ∈ R,

f σ g if and only if f (0)6 g(0),

f τ g if and only if f (0) = g(0).

Argue which of the relations ρ,σ ,τ is/are equivalence relation(s). Argue which is/are partial order(s).

14. Let ρ be a relation on a set A. Define ρ−1 = {(b,a) | (a,b)∈ ρ}. Also for two relations ρ,σ on A, define the

composite relation ρ ◦σ as (a,c) ∈ ρ ◦σ if and only if there exists b ∈ A such that (a,b) ∈ ρ and (b,c) ∈ σ .

Prove the following assertions.

(a) ρ is both symmetric and antisymmetric if and only if ρ ⊆ {(a,a) | a ∈ A}.

(b) ρ is transitive if and only if ρ ◦ρ = ρ .

(c) If ρ is non-empty, then ρ is an equivalence relation if and only if ρ−1 ◦ρ = ρ .

(d) ρ is a partial order if and only if ρ−1 is a partial order.

15. A repunit is an integer of the form 111 . . .1. Prove that any n ∈ N with gcd(n,10) = 1 divides a repunit.

16. You pick six points in a 3×4 rectangle. Prove that two of these points must be at a distance 6
√

5.

17. You pick nine distinct points with integer coordinates in the three-dimensional space. Prove that there must

exist two of these nine points—call them P and Q—such that the line segment PQ has a point (other than P

and Q) on it with integer coordinates.

18. (a) Let p be a prime number, and x an integer not divisible by p. Prove that there exist non-zero integers

a,b of absolute values less than
√

p such that p|(ax−b).

(b) Now assume that p is of the form 4k+1. We know from number theory that in this case there exists an

integer x such that p|(x2 +1). Show that p = a2 +b2 for some integers a,b.

19. Let a,b ∈ N with gcd(a,b) = 1. Use the pigeon-hole principle to prove that ua+ vb = 1 for some u,v ∈ Z.

20. [Chinese remainder theorem] Let m,n ∈ N with gcd(m,n) = 1, a ∈ {0,1,2, . . . ,m− 1}, and b ∈ {0,1,2,
. . . ,n−1}. Prove that there exists an integer x such that x rem m = a, and x rem n = b.

21. Let ξ be an irrational number. Prove that given any real ε > 0 (no matter how small), there exist integers

a,b such that 0 < aξ −b < ε .

22. Let n > 10 be an integer. You choose n distinct elements from the set {1,2,3, . . . ,n2}. Prove that there must

exist two disjoint non-empty subsets of the chosen numbers, whose sums are equal.
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