1. Let S(m,n) be the Stirling numbers of the second kind. Let us define *falling factorials* as

$$x^{\underline{n}} = x(x-1)(x-2)\cdots(x-n+1).$$

Prove the identity $x^m = \sum_{m=0}^m S(m,n)x^n$.

- **2.** Prove the identity $S(m,n) = \sum_{r=n-1}^{m} \binom{m}{r} S(r,n-1).$
- 3. The *n*-th Bell number is defined as the total number of partitions of an *n*-set (into any number of parts), so

$$B_n = \sum_{k=0}^n S(n,k).$$

Prove the identity $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.

- 4. Let s(n,m) denote the number of permutations of 1, 2, 3, ..., n, that have exactly *m* cycles. For example, the permutation 3, 1, 6, 8, 2, 5, 7, 4 (for n = 8) has three cycles (1, 3, 6, 5, 2), (4, 8), (7). The numbers s(n, m) are called *Stirling numbers of the first kind*. Prove that s(m,n) = s(m-1,n-1) + (m-1)s(m-1,n).
- 5. Define the rising factorials as

$$x^{\overline{m}} = x(x+1)(x+2)\cdots(x+m-1).$$

Prove the identity $x^{\overline{m}} = \sum_{n=0}^{m} s(m,n)x^n$. How can you express the falling factorial $x^{\underline{m}}$ in terms of the Stirling numbers of the first kind?

- **6.** Let $f : A \to B$ be a function. Prove the following assertions.
 - (a) $S \subseteq f^{-1}(f(S))$ for every $S \subseteq A$. Give an example where the inclusion is proper.
 - (b) f is injective if and only if $S = f^{-1}(f(S))$ for every $S \subseteq A$.
 - (c) $f(f^{-1}(T)) \subseteq T$ for every $T \subseteq B$. Give an example where the inclusion is proper.
 - (d) f is surjective if and only if $f(f^{-1}(T)) = T$ for every $T \subseteq B$.

 - (e) $f(f^{-1}(f(S))) = f(S)$ for all $S \subseteq A$. (f) $f^{-1}(f(f^{-1}(T))) = f^{-1}(T)$ for all $T \subseteq B$.
- 7. Let $f : A \to B$ and $g : B \to C$ be functions.
 - (a) Prove that if the function $g \circ f : A \to C$ is injective, then f is injective.
 - (b) Give an example in which $g \circ f$ is injective, but g is not injective.
 - (c) Prove that if $g \circ f$ is surjective, then g is surjective.
 - (d) Give an example in which $g \circ f$ is surjective, but f is not surjective.

8. A function $f : \mathbb{Z} \to \mathbb{Z}$ is called *nilpotent* if for some $n \in \mathbb{N}$ we have $f^n(a) = 0$ for all $a \in \mathbb{Z}$.

- (a) Give an example of a non-constant nilpotent function.
- (b) Prove or disprove: The function f(a) = ||a|/2| is nilpotent.
- **9.** For a function $f: A \to B$, define a function $\mathscr{F}: \mathscr{P}(A) \to \mathscr{P}(B)$ as $\mathscr{F}(S) = f(S)$ for all $S \subseteq A$. Prove that:
 - (a) \mathscr{F} is injective if and only if f is injective.
 - (b) \mathscr{F} is surjective if and only if f is surjective.
 - (c) \mathscr{F} is bijective if and only if f is bijective.

- **10.** A function $f : \mathbb{R} \to \mathbb{R}$ is called *monotonic increasing* if $f(a) \leq f(b)$ whenever $a \leq b$. It is called *strictly monotonic increasing* if f(a) < f(b) whenever a < b. One can define *monotonic decreasing* and *strictly monotonic decreasing* functions in analogous ways.
 - (a) Prove that a strictly monotonic increasing function is injective.
 - (b) Demonstrate that an injective function $\mathbb{R} \to \mathbb{R}$ need not be strictly increasing or strictly decreasing.
 - (c) Prove that a continuous injective function $\mathbb{R} \to \mathbb{R}$ is either strictly increasing or strictly decreasing.
- **11.** Let $x \in \mathbb{R}$ and $m, n \in \mathbb{N}$. Prove the following assertions about the floor and ceiling functions.

(a)
$$\left[\frac{x}{n}\right] = \left\lfloor \frac{x+n-1}{n} \right\rfloor$$
.
(b) $\left\lfloor \left\lfloor \frac{x}{m} \right\rfloor / n \right\rfloor = \left\lfloor \frac{x}{mn} \right\rfloor$ and $\left\lceil \left\lceil \frac{x}{m} \right\rceil / n \right\rceil = \left\lceil \frac{x}{mn} \right\rceil$.
(c) $\lfloor mx \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{m} \right\rfloor + \left\lfloor x + \frac{2}{m} \right\rfloor + \dots + \left\lfloor x + \frac{m-1}{m} \right\rfloor$

- 12. Let *A* be the set of all non-empty finite subsets of \mathbb{Z} . Define a relation τ on *A* as: $U \tau V$ if and only if either U = V or $\min(U) < \min(V)$. Prove or disprove: τ is a partial order on *A*.
- **13.** Let *A* be the set of all functions $\mathbb{R} \to \mathbb{R}$. Define relations ρ, σ, τ on *A* as follows.
 - $f \rho g$ if and only if $f(a) \leq g(a)$ for all $a \in \mathbb{R}$,
 - $f \sigma g$ if and only if $f(0) \leq g(0)$,
 - $f \tau g$ if and only if f(0) = g(0).

Argue which of the relations ρ , σ , τ is/are equivalence relation(s). Argue which is/are partial order(s).

- **14.** Let ρ be a relation on a set *A*. Define $\rho^{-1} = \{(b,a) \mid (a,b) \in \rho\}$. Also for two relations ρ, σ on *A*, define the composite relation $\rho \circ \sigma$ as $(a,c) \in \rho \circ \sigma$ if and only if there exists $b \in A$ such that $(a,b) \in \rho$ and $(b,c) \in \sigma$. Prove the following assertions.
 - (a) ρ is both symmetric and antisymmetric if and only if $\rho \subseteq \{(a,a) \mid a \in A\}$.
 - (b) ρ is transitive if and only if $\rho \circ \rho = \rho$.
 - (c) If ρ is non-empty, then ρ is an equivalence relation if and only if $\rho^{-1} \circ \rho = \rho$.
 - (d) ρ is a partial order if and only if ρ^{-1} is a partial order.
- **15.** A repunit is an integer of the form 111...1. Prove that any $n \in \mathbb{N}$ with gcd(n, 10) = 1 divides a repunit.
- 16. You pick six points in a 3 × 4 rectangle. Prove that two of these points must be at a distance $\leq \sqrt{5}$.
- 17. You pick nine distinct points with integer coordinates in the three-dimensional space. Prove that there must exist two of these nine points—call them P and Q—such that the line segment PQ has a point (other than P and Q) on it with integer coordinates.
- 18. (a) Let p be a prime number, and x an integer not divisible by p. Prove that there exist non-zero integers a, b of absolute values less than \sqrt{p} such that p|(ax-b).

(b) Now assume that p is of the form 4k + 1. We know from number theory that in this case there exists an integer x such that $p|(x^2+1)$. Show that $p = a^2 + b^2$ for some integers a,b.

- **19.** Let $a, b \in \mathbb{N}$ with gcd(a, b) = 1. Use the pigeon-hole principle to prove that ua + vb = 1 for some $u, v \in \mathbb{Z}$.
- **20.** [*Chinese remainder theorem*] Let $m, n \in \mathbb{N}$ with gcd(m, n) = 1, $a \in \{0, 1, 2, ..., m-1\}$, and $b \in \{0, 1, 2, ..., m-1\}$. Prove that there exists an integer x such that $x \operatorname{rem} m = a$, and $x \operatorname{rem} n = b$.
- **21.** Let ξ be an irrational number. Prove that given any real $\varepsilon > 0$ (no matter how small), there exist integers a, b such that $0 < a\xi b < \varepsilon$.
- **22.** Let $n \ge 10$ be an integer. You choose *n* distinct elements from the set $\{1, 2, 3, ..., n^2\}$. Prove that there must exist two disjoint non-empty subsets of the chosen numbers, whose sums are equal.