(CS21001 Discrete Structures
Tutorial 3

. Let S(m,n) be the Stirling numbers of the second kind. Let us define falling factorials as
M=x(x—1)(x=2)---(x—n+1).

Prove the identity x" = Z S(m,n)x™.
n=0

m
. Prove the identity S(m,n) = Z (m) S(r,n—1).
r

r=n—1
. The n-th Bell number is defined as the total number of partitions of an n-set (into any number of parts), so

n

B, =Y S(nk).

k=0

n
Prove the identity B, | = Z <Z> B;.
k=0

. Let s(n,m) denote the number of permutations of 1,2,3,...,n, that have exactly m cycles. For example, the

permutation 3,1,6,8,2,5,7,4 (for n = 8) has three cycles (1,3,6,5,2),(4,8),(7). The numbers s(n,m) are
called Stirling numbers of the first kind. Prove that s(m,n) =s(m—1,n—1)+ (m—1)s(m—1,n).

. Define the rising factorials as

T =x(x+1)(x+2) - (x+m—1).

n
Prove the identity X" = Z s(m,n)x". How can you express the falling factorial X in terms of the Stirling
n=0
numbers of the first kind?

. Let f: A — B be a function. Prove the following assertions.

(@) SC f(f(S)) for every S C A. Give an example where the inclusion is proper.
(b) fisinjective if and only if S = f~!(f(S)) for every S C A.

(¢) f(f~(T)) C T forevery T C B. Give an example where the inclusion is proper.
(d) f is surjective if and only if f(f~!(T)) =T for every T C B.

© £(F ' (£(5)) = £(S) forall S C A,

® 7 (F(F (1)) = £\ (T) forall T C B

. Let f:A— Band g: B — C be functions.

(a) Prove that if the function go f : A — C is injective, then f is injective.
(b) Give an example in which go f is injective, but g is not injective.

(¢) Prove thatif go f is surjective, then g is surjective.

(d) Give an example in which go f is surjective, but f is not surjective.

. A function f: Z — Z is called nilpotent if for some n € N we have f"(a) =0 for all a € Z.

(a) Give an example of a non-constant nilpotent function.
(b) Prove or disprove: The function f(a) = [|a|/2] is nilpotent.

. For a function f : A — B, define a function . : Z(A) — Z(B) as .Z (S) = f(S) for all S C A. Prove that:

(a) % isinjective if and only if f is injective.
(b) .7 is surjective if and only if f is surjective.
(c) 7 isbijective if and only if f is bijective.
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A function f : R — R is called monotonic increasing if f(a) < f(b) whenever a < b. 1t is called strictly
monotonic increasing if f(a) < f(b) whenever a < b. One can define monotonic decreasing and strictly
monotonic decreasing functions in analogous ways.

(a) Prove that a strictly monotonic increasing function is injective.
(b) Demonstrate that an injective function R — R need not be strictly increasing or strictly decreasing.
(c) Prove that a continuous injective function R — R is either strictly increasing or strictly decreasing.

Let x € R and m,n € N. Prove the following assertions about the floor and ceiling functions.

o ][
o (L)) = 2 [ )= 2]
(¢) [mx]=|x|+ {H;J + {HiJ oot {HTJ.

Let A be the set of all non-empty finite subsets of Z. Define a relation T on A as: U 7V if and only if either
U =V or min(U) < min(V). Prove or disprove: 7 is a partial order on A.

Let A be the set of all functions R — R. Define relations p, o, 7 on A as follows.
fpg ifandonlyif f(a)<g(a)foralla€R,
fog ifandonlyif f(0)<g(0),
ftg ifandonlyif f(0)=g(0).

Argue which of the relations p, 0, T is/are equivalence relation(s). Argue which is/are partial order(s).

Let p be a relation on a set A. Define p~! = {(b,a) | (a,b) € p}. Also for two relations p, o on A, define the
composite relation p o o as (a,c) € p o o if and only if there exists b € A such that (a,b) € p and (b,c) € ©.
Prove the following assertions.

(a) p is both symmetric and antisymmetric if and only if p C {(a,a) |a € A}.
(b) p is transitive if and only if pop = p.

(c) If p is non-empty, then p is an equivalence relation if and only if p~
(d) p is a partial order if and only if p~! is a partial order.

Top=p.
A repunit is an integer of the form 111...1. Prove that any n € N with ged(n, 10) = 1 divides a repunit.
You pick six points in a 3 x 4 rectangle. Prove that two of these points must be at a distance < v/5.

You pick nine distinct points with integer coordinates in the three-dimensional space. Prove that there must
exist two of these nine points—call them P and OQ—such that the line segment PQ has a point (other than P
and Q) on it with integer coordinates.

(a) Let p be a prime number, and x an integer not divisible by p. Prove that there exist non-zero integers
a,b of absolute values less than ,/p such that p|(ax —b).

(b) Now assume that p is of the form 4k + 1. We know from number theory that in this case there exists an
integer x such that p|(x?>+1). Show that p = a* + b? for some integers a, b.

Let a,b € N with gcd(a,b) = 1. Use the pigeon-hole principle to prove that ua +vb = 1 for some u,v € Z.

[Chinese remainder theorem] Let m,n € N with ged(m,n) =1,a € {0,1,2,....m—1}, and b € {0,1,2,
...,n—1}. Prove that there exists an integer x such that x rem m = a, and x rem n = b.

Let & be an irrational number. Prove that given any real € > 0 (no matter how small), there exist integers
a,b suchthat 0 < a€ —b < €.

Let n > 10 be an integer. You choose n distinct elements from the set {1,2,3,... ,n2}. Prove that there must
exist two disjoint non-empty subsets of the chosen numbers, whose sums are equal.
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