1 (a) Define an operation * on \mathbb{R} as x * y = x + y + xy. Prove or disprove: $(\mathbb{R}, *)$ is a group.

Solution [Closure] Obvious.

[Associativity] We have (x*y)*z = (x+y+xy)*z = (x+y+xy)+z+(x+y+xy)z = x+y+z+xy+xz+yz+xyz and x*(y*z) = x*(y+z+yz) = x+(y+z+yz)+x(y+z+yz) = x+y+z+xy+xz+yz+xyz, i.e., (x*y)*z = x*(y*z).

[Identity] It is easy to check that 0 is the identity with respect to *.

[Inverse] Let $x \in \mathbb{R}$ have the inverse $y \in \mathbb{R}$, i.e., x * y = x + y + xy = 0, i.e., $y = \frac{-x}{1+x}$, i.e., y exists if and only if $x \neq -1$. Since -1 does not have an inverse under *, $(\mathbb{R}, *)$ is not a group.

(b) Prove or disprove: $(\mathbb{R} \setminus \{-1\}, *)$ is a group.

Solution It only remains to check the closure property. Take $x, y \in \mathbb{R}$, $x, y \neq 1$. Then $(1+x)(1+y) \neq 0$, i.e., $x + y + xy \neq -1$, i.e., $\mathbb{R} \setminus \{-1\}$ is closed under *.

2 Let S be the set of all functions $\mathbb{Z} \to \mathbb{Z}$. Define addition of functions in \mathbb{Z} as (f+g)(n) = f(n) + g(n) for all $n \in \mathbb{Z}$. Prove that S is an Abelian group under this addition.

Solution [Closure] Obvious.

[Associativity] ((f+g)+h)(n) = (f+g)(n)+h(n) = (f(n)+g(n))+h(n) = f(n)+(g(n)+h(n)) = f(n) + (g+h)(n) = (f + (g+h))(n) for all $n \in \mathbb{Z}$. [Identity] The zero function that takes every $n \mapsto 0$. [Inverse] (-f)(n) = -(f(n)) for every $f \in S$. [Commutativity] (f+g)(n) = f(n) + g(n) = g(n) + f(n) = (g+f)(n) for all $n \in \mathbb{Z}$.

3 Prove that the set $\operatorname{Aut} G$ of all automorphisms of a group G is a group under composition of functions.

Solution Let $f, g, h \in Aut G$ be arbitrary.

[Closure] $(f \circ g)(mn) = f(g(mn)) = f(g(m)g(n)) = f(g(m))f(g(n)) = (f \circ g)(m)(f \circ g)(n)$ for all $n \in \mathbb{Z}$. That is, $f \circ g$ is a group homomorphism. Moreover, the composition of two bijections is again a bijection.

[Associativity] Function composition is associative.

[Identity] The identity function id_G is an automorphism of G.

[Inverse] An automorphism is invertible as a function and the inverse map is again a homomorphism and bijective.

4 Prove that $\operatorname{Aut} \mathbb{Z}_n \cong \mathbb{Z}_n^*$.

Solution Define a function φ : Aut $\mathbb{Z}_n \to \mathbb{Z}_n^*$ as $\varphi(f) = f(1)$.

 $[\varphi \text{ is well-defined}]$ $(\mathbb{Z}_n, +)$ is a cyclic group generated by 1. In fact, a homomorphism f of \mathbb{Z}_n is fully specified by f(1), and for any $a \in \mathbb{Z}_n$, we have $f(a) = a \times f(1) \pmod{n}$. Now, f is a bijective if and only if $0, f(1), 2f(1), \ldots, (n-1)f(1)$ exhaust all elements of \mathbb{Z}_n , i.e., if and only if gcd(f(1), n) = 1, i.e., if and only if $f(1) \in \mathbb{Z}_n^*$.

 $[\varphi \text{ is a group homomorphism}]$ Take $f, g \in \operatorname{Aut} \mathbb{Z}_n^*$. Then for $a \in \mathbb{Z}_n$, we have $\varphi(f \circ g) = (f \circ g)(1) = f(g(1)) = f(1)g(1) = \varphi(f)\varphi(g)$.

 $[\varphi \text{ is injective}]$ If $\varphi(f) = \varphi(g)$, we have f(1) = g(1), i.e., f(a) = af(1) = ag(1) = g(a) for all $a \in \mathbb{Z}_n$, i.e., f = g.

[φ is surjective] Take any $x \in \mathbb{Z}_n^*$. Then the function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ mapping a to $xa \pmod{n}$ is clearly an automorphism of \mathbb{Z}_n , and we have $\varphi(f) = f(1) = x$.

- 5 Let G be a (multiplicative) group and let H, K be subgroups of G. Prove the following assertions.
 - (a) $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

Solution [If] If $H \subseteq K$, then $H \cup K = K$, whereas if $K \subseteq H$, then $H \cup K = H$. In either case, $H \cup K$ is a subgroup of G.

[Only if] Suppose that $H \cup K$ is a subgroup of G, but neither $H \subseteq K$ nor $K \subseteq H$ is true. Then there exist $a \in H \setminus K$ and $b \in K \setminus H$. Since $a, b \in H \cup K$ and $H \cup K$ is a subgroup of G, we have $ab \in H \cup K$, i.e., $ab \in H$ or $ab \in K$. If $ab \in H$, then $b = a^{-1}(ab) \in H$, a contradiction. On the other hand, if $ab \in K$, then $a = (ab)b^{-1} \in H$, a contradiction again.

(b) HK is a subgroup of G if and only if HK = KH.

Solution [If] Take arbitrary elements $a = h_1 k_1$ and $b = h_2 k_2$ in HK (with $h_1, h_2 \in H$ and $k_1, k_2 \in K$). But then $ab^{-1} = (h_1k_1)(k_2^{-1}h_2^{-1}) = h_1(k_3h_2^{-1})$, where $k_3 = k_1k_2^{-1} \in K$. Since HK = KH, we have $h_4 \in H$ and $k_4 \in K$ such that $k_3h_2^{-1} = h_4k_4$. But then $ab^{-1} = (h_1h_4)k_4 \in HK$.

[Only if] If HK is a subgroup of G, we have $(HK)^{-1} = HK$. But $(HK)^{-1} = K^{-1}H^{-1} = KH$.

6 Let H be a subgroup of G with index [G:H] = 2. Prove that $H \triangleleft G$.

Solution There are two right cosets of H in G, namely, H itself and $G \setminus H$. Thus for $a \in G$, we have $aH = \begin{cases} H & \text{if } a \in H, \\ G \setminus H & \text{if } a \notin H. \end{cases}$ Likewise, $Ha = \begin{cases} H & \text{if } a \in H, \\ G \setminus H & \text{if } a \notin H. \end{cases}$

- 7 Let G be a finite multiplicative group and $h = \operatorname{ord} a$ for some $a \in G$.
 - (a) $a^n = e$ if and only if $h \mid n$.

Solution [if] Let n = th. Then $a^n = (a^h)^t = e^t = e$.

[Only if] Suppose $a^n = e$, where n = qh + r with $0 \le r < h$. Since $a^h = e$, it follows that $a^r = e$. Since ord a is the smallest positive integer h with the property $a^h = e$, we must have r = 0, i.e., n = qh is an integral multiple of h.

(b) Prove that $\operatorname{ord}(a^k) = \frac{h}{\operatorname{gcd}(h,k)}$ for any $k \in \mathbb{Z}$.

Solution Let $r = \operatorname{ord}(a^k)$. We have $(a^k)^{\frac{h}{\gcd(h,k)}} = (a^h)^{\frac{k}{\gcd(h,k)}} = e$ (since $a^h = e$ and $\frac{k}{\gcd(h,k)}$ is an integer), so $r \leq \frac{h}{\gcd(h,k)}$. Also $(a^k)^r = e$, so by Part (a), $h \mid kr$, i.e., $\frac{h}{\gcd(h,k)} \mid \frac{k}{\gcd(h,k)}r$. Since $\frac{h}{\gcd(h,k)}$ and $\frac{k}{\gcd(h,k)}$ are coprime, we have $\frac{h}{\gcd(h,k)} \mid r$, i.e., $\frac{h}{\gcd(h,k)} \leq r$.

8 Let $n \in \mathbb{N}$, $n \neq 0$. Prove that the only homomorphism $\mathbb{Z}_n \to \mathbb{Z}$ is the zero map.

Solution Let $f \in \text{Hom}(\mathbb{Z}_n, \mathbb{Z})$ and a = f(1). Since $1 + 1 + \cdots + 1$ (*n* times) = 0 in \mathbb{Z}_n , we have 0 = f(0) = nf(1) = na. Since $n \neq 0$, we have a = 0, i.e., f(1) = 0. Since 1 generates Z_n , it follows that f is the zero map.

Additional exercises

- 9 Which of the following are semigroups? Monoids? Groups?
 - (a) The set of all (univariate) polynomials with integer coefficients under polynomial addition.
 - (b) The set of all polynomials with rational coefficients under polynomial addition.
 - (c) The set of all non-zero polynomials with integer coefficients under polynomial multiplication.
 - (d) The set of all non-zero polynomials with rational coefficients under polynomial multiplication.
 - (e) The set of all non-constant polynomials with integer coefficients under polynomial addition.
 - (f) The set of all non-constant polynomials with rational coefficients under polynomial multiplication.
 - (g) The set $\{1, -1, i, -i\}$ under multiplication, where i is a complex square root of unity.
 - (h) $\{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ under addition. The same set under multiplication.
 - (i) $\{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ under addition. The same set under multiplication.

- (j) $\{a + bi \mid a, b \in \mathbb{Z}\}$ under addition. The same set under multiplication.
- (k) $\{a + bi \mid a, b \in \mathbb{Q}\}$ under addition. The same set under multiplication.
- **10** Prove that:
 - (a) Any group of order 4 is Abelian.
 - (b) Any cyclic group is Abelian.
 - (c) Any group of prime order is cyclic.
 - (d) Any Abelian group of square-free order is cyclic.
- 11 Let G be a group, $a, b \in G$, m = ord a, and n = ord b. Assume that $m, n < \infty$.
 - (a) Prove or disprove: $\operatorname{ord}(ab) = mn$.
 - (b) Prove or disprove: If gcd(m, n) = 1, then ord(ab) = mn.
 - (c) Prove or disprove: If G is Abelian and gcd(m, n) = 1, then ord(ab) = mn.

(d) If G is a finite cyclic group, prove that G has exactly $\phi(r)$ generators, where r is the order of G and ϕ is Euler's totient function.

12 Let G be a multiplicative group and $a \in G$.

(a) Define the *centralizer* of a as $C(a) = \{b \in G \mid ab = ba\}$. Prove that C(a) is a subgroup of G. What is C(a) if G is Abelian?

(b) Two elements $a, b \in G$ are said to be *conjugate* (to one another), denoted $a \sim b$, if $b = xax^{-1}$ for some $x \in G$. Prove that conjugacy is an equivalence relation on G.

- (c) Prove that if $a \sim b$, then ord a = ord b.
- 13 (a) Let G be the set of all invertible (i.e., non-singular) 2×2 matrices with real entries. Prove that G is a group under matrix multiplication.
 - (**b**) Define the center Z(G) of G as:

$$Z(G) = \{A \in G \mid AP = PA \text{ for all } P \in G\}.$$

Prove that Z(G) is a normal subgroup of G.

(c) Derive that $Z(G) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in \mathbb{R}, a \neq 0 \right\}.$

(d) A matrix $A \in G$ is said to be *similar* to a matrix $B \in G$ if $B = PAP^{-1}$ for some $P \in G$. Prove that similarity is an equivalence relation on G.

(e) For any fixed $P \in G$, define the map $f_P : G \to G$ as $f_P(A) = PAP^{-1}$. Prove that f_P is a group isomorphism.

- (f) Prove that f_P is the identity map on G if and only if $P \in Z(G)$.
- 14 Let $f: G_1 \to G_2$ be a group homomorphism, where G_1, G_2 are multiplicative groups with identity elements e_1, e_2 . Further let H_1 be a subgroup of G_1 , and H_2 a subgroup of G_2 . Prove the following assertions:

(a)
$$f(e_1) = e_2$$
.

- (b) $f(a^{-1}) = f(a)^{-1}$ for all $a \in G_1$.
- (c) $f(H_1) = \{a_2 \mid a_2 = f(a_1) \text{ for some } a_1 \in H_1\}$ is a subgroup of G_2 .
- (d) $f^{-1}(H_2) = \{a_1 \mid f(a_1) \in H_2\}$ is a subgroup of G_1 .
- (e) Let $a_2 = f(a_1)$ for some $a_1 \in G_1$. Prove or disprove: ord $a_1 = \text{ord } a_2$.
- (f) Repeat Part (e) assuming that f is an isomorphism.
- (g) $H_1 \times H_2$ is a subgroup of $G_1 \times G_2$.

15 Let G be a finite group, and H, K subgroups of G with relatively prime orders. Prove that $H \cap K = \{e\}$.

- 16 Let G be a (multiplicative) group, H a subgroup of G, and $a, b \in G$. Prove that the following conditions are equivalent.
 - (i) Ha = Hb. (ii) $b \in Ha$. (iii) $ab^{-1} \in H$.
- 17 Let G be a finite cyclic group.
 - (a) Prove that every subgroup of G is cyclic.
 - (b) Let H, K be subgroups of G of respective orders s, t. What is the order of $H \cap K$?
- 18 Compute the multiplicative inverse of 17 modulo 71.
- **19** Compute the order of 19 in the multiplicative group \mathbb{Z}_{32}^* .
- **20** Let G be an Abelian group. An element $a \in G$ is called a *torsion element* of G if ord a is finite. Prove that the set of all torsion elements of G is a subgroup of G.
- **21** Prove that for any integer $n \ge 3$ the multiplicative group $\mathbb{Z}_{2^n}^*$ is *not* cyclic. (**Hint:** You may look at the elements $2^{n-1} \pm 1$.)
- 22 Prove that the only automorphisms of $(\mathbb{Z}, +)$ are the identity map and the map that sends $a \mapsto -a$.
- **23** Let G be a group with identity e and $H \neq \{e\}$ a subgroup of G. Prove or disprove: The only homomorphism $G/H \rightarrow G$ is the map $aH \mapsto e$ for all $a \in G$.
- **24** Let G be a finite cyclic group of order m, r a divisor of m, H a subgroup of G of order r, and $a \in G$. Prove that $a \in H$ if and only if $a^r = e$, where e is the identity element of G. Demonstrate by an example that this result need not hold if G is not cyclic.
- **25** Let G_1, G_2, \ldots, G_n be groups and $G = G_1 \times G_2 \times \cdots \times G_n$. Let each G_i be finite of order m_i . Establish that G is cyclic if and only if each G_i is cyclic and $gcd(m_i, m_j) = 1$ for $i \neq j$.
- **26** Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying $x^n = e$ is at most n for every $n \in \mathbb{N}$. Prove that G is cyclic.