CS21001 Discrete Structures, Autumn 2007
Tutorial 10: November 1 and 8, 2007

1 (a) Define an operation onR asx xy = = + y + xy. Prove or disprove(R, %) is a group.

Solution [Closure] Obvious.

[Associativity] We havex+y)+z = (z+y+xy)*z = (x4+y+zy)+z+(x+y+zy)z = z+y+z+ay+rz+
yztazyzandrx(yxz) = xx(y+z+yz) = 2+ (y+z+yz)+z(y+z+yz) = e+y+z+zyt+zz+yz+ayz,
e, (zxy)xz=axx(yx*z).

[Identity] Itis easy to check thatis the identity with respect te.

[Inverse] Letz € R have the inversg € R, i.e.,xxy =z +y+zy=0,ie,y = 7, i.e.,y exists if and

only if z # —1. Since—1 does not have an inverse underR, x) is not a group.
(b) Prove or disprove(R \ {—1}, *) is a group.

Solution It only remains to check the closure property. Take € R, z,y # 1. Then(1 +z)(1 +y) # 0,
e,z +y+axy # —1,i.e,R\ {—1}is closed undex.

2 Let S be the set of all function®& — Z. Define addition of functions i as(f + g)(n) = f(n) + g(n) for
all n € Z. Prove thatS is an Abelian group under this addition.

Solution [Closure] Obvious.

[Associativity] ((f +¢) +h)(n) = (f+9)(n) +h(n) = (f(n) +9(n)) +h(n) = f(n) + (g9(n) + h(n)) =
f(n)+(g+h)(n)=(f+(g+h))(n)foralln c Z.

[Identity] The zero function that takes evety— 0.

[Inverse] (—f)(n) = —(f(n)) forevery f € S.

[Commutativity] (f + g)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n) foralln € Z.

3 Prove that the sedut G of all automorphisms of a grou is a group under composition of functions.
Solution Let f, g, h € Aut G be arbitrary.
[Closure] (f o g)(mn) = f(g(mn)) = f(g(m)g(n)) = f(g(m))f(g(n)) = (f o g)(m)(f o g)(n) for all

n € Z. Thatis, f o g is a group homomorphism. Moreover, the composition of twedbions is again a
bijection.

[Associativity] Function composition is associative.

[Identity] The identity functionid is an automorphism afr.

[Inverse] An automorphism is invertible as a function and tfiverse map is again a homomorphism and
bijective.

4 Prove thatAut Z,, = Z;.

Solution Define a functionp : Aut Z,, — Z} ase(f) = f(1).

[ is well-defined] (Z,,+) is a cyclic group generated by In fact, a homomorphisnf of Z,, is fully
specified byf (1), and for anyu € Z,,, we havef(a) = a x f(1) (mod n). Now, f is a bijective if and only
if 0, f(1),2f(1),...,(n —1)f(1) exhaust all elements &,, i.e., if and only ifged(f(1),n) = 1, i.e., if
andonly if f(1) € Z.

[ is a group homomorphism] Takg g € AutZ}. Then fora € Z,, we havep(fog) = (fog)(l) =
flg(1)) = f(1)g(1) = o(f)e(g).

[¢ is injective] If o(f) = ¢(g), we havef(1) = ¢g(1), i.e., f(a) = af(1) = ag(1) = g(a) forall a € Z,,
e, f =g.

[¢ is surjective] Take any € Z}. Then the functioryf : Z,, — Z,, mappinga to za (mod n) is clearly an
automorphism oF,,, and we haveo(f) = f(1) = =.



5 Let G be a (multiplicative) group and Igf, K be subgroups aff. Prove the following assertions.
(8 H UK isasubgroup oz ifandonlyif H C K or K C H.
Solution [If] If H C K,thenH U K = K, whereas if C H, thenH U K = H. In either caseH U K
is a subgroup of.

[Only if] Suppose that? U K is a subgroup of7, but neitherd C K nor K C H is true. Then there exist
a€ H\Kandbe K\ H. Sincea,b € HU K andH U K is a subgroup of7, we havenb € H UK, i.e.,
abe Horabe K. If ab € H, thenb = a~!(ab) € H, a contradiction. On the other handgif € K, then
a = (ab)b~! € H, a contradiction again.

(b) HK is asubgroup ofz ifand onlyif HK = KH.
Solution [If] Take arbitrary elementa = h1k; andb = hoks in HK (With hy, ho € H andkq, ky € K).

But thenab—' = (hik1) (ks 'hy') = hi(kshy '), whereks = kik, ' € K. SinceHK = K H, we have
hy € H andk, € K such thatizhy ' = hyks. Butthenab™" = (hihy)ky € HK.

[Only if] If HK is asubgroup of, we havel HK) ' = HK.But(HK) ' = K~'H~! = KH.

6 Let H be a subgroup of with index [G : H| = 2. Prove thatd < G.

Solution There are two right cosets df in G, namely, H itself andG \ H. Thus fora € G, we have
aH_{H ifacH {H ifa€H,

G\H ifagH “KeWSeHI= 1o\ g itqd .

7 Let G be a finite multiplicative group ankl = ord a for somea € G.
(@ a™=-eifandonlyifh | n.
Solution [if] Let n = th. Thena” = (a)! = e = e.
[Only if] Supposea™ = e, wheren = ¢h + r with 0 < 7 < h. Sincea” = e, it follows thata” = e. Since

ord a is the smallest positive integérwith the propertya” = e, we must haver = 0, i.e.,n = ¢h is an
integral multiple ofh.

(b) Prove thabrd(a*) = m foranyk e Z.

] h k . .
Solution  Letr = ord(a*). We have(a®)=T"® = (a")=F = ¢ (sincea” = e and i is an
integer), sa- < m. Also (aF)" = e, so by Part (@) | kr, i.e., gcdélm) | gcdfmk)’”- Sincem and

k H h H h

8 Letn € N, n # 0. Prove that the only homomorphis#), — Z is the zero map.

Solution Let f € Hom(Z,,Z) anda = f(1). Sincel + 1+ --- + 1 (ntimes)= 0 in Z,, we have
0= f(0) =nf(1l) = na. Sincen # 0, we havea = 0, i.e., f(1) = 0. Sincel generates,,, it follows that
f is the zero map.

Additional exercises

9 Which of the following are semigroups? Monoids? Groups?

(@) The set of all (univariate) polynomials with integer coa#itts under polynomial addition.

(b) The set of all polynomials with rational coefficients undetymomial addition.

(c) The set of all non-zero polynomials with integer coefficeenhder polynomial multiplication.

(d) The set of all non-zero polynomials with rational coeffitkeander polynomial multiplication.

(e) The set of all non-constant polynomials with integer cogdfits under polynomial addition.

(f) The set of all non-constant polynomials with rational caédfits under polynomial multiplication.
(9 Theset{1,—1,1i,—i} under multiplication, wheré is a complex square root of unity.

(h) {a+0bV5|a,bc Z} under addition. The same set under multiplication.

(i) {a+bV5]a,b<c Q}under addition. The same set under multiplication.



10

11

12

13

14

15

() {a+bi]a,be Z}under addition. The same set under multiplication.
(k) {a+bi|a,be Q}underaddition. The same set under multiplication.

Prove that:

(@ Any group of ordert is Abelian.

(b) Any cyclic group is Abelian.

(c) Any group of prime order is cyclic.

(d) Any Abelian group of square-free order is cyclic.

Let G be a groupg, b € G, m = ord a, andn = ord b. Assume thain,n < oc.

(@ Prove or disproveord(ab) = mn.

(b) Prove or disprove: Igcd(m,n) = 1, thenord(ab) = mn.

(c) Prove ordisprove: If7 is Abelian andzcd(m, n) = 1, thenord(ab) = mn.

(d) If Gis afinite cyclic group, prove tha¥ has exactlys(r) generators, whereis the order ofG and¢
is Euler’s totient function.

Let G be a multiplicative group and € G.

(@) Define thecentralizer of a asC(a) = {b € G | ab = ba}. Prove thaC(a) is a subgroup o&. What
is C(a) if G is Abelian?

(b) Two elementsz,b € G are said to beonjugate (to one another), denoted~ b, if b = zaz~" for
somez € G. Prove that conjugacy is an equivalence relatiorGon

(c) Prove thatifa ~ b, thenord a = ord b.

(a) LetG be the set of all invertible (i.e., non-singul&)x 2 matrices with real entries. Prove th@dtis a
group under matrix multiplication.

(b) Define thecenter Z(G) of G as:
Z(G)={Ae G| AP =PA forall P € G}.

Prove thatZ (G) is a normal subgroup df.

(©) DerivethatZ(G):{(S 2) \aeR,a;«éO}.

(d) A matrix A € G is said to besimilar to a matrixB € G if B = PAP~! for someP € G. Prove that
similarity is an equivalence relation @r.

(e) For any fixedP € G, define the mag, : G — G asfp(A) = PAP~L. Prove thatf,, is a group
isomorphism.

(f) Prove thatf, is the identity map ot~ if and only if P € Z(G).

Let f : G1 — G4 be a group homomorphism, whetg , G» are multiplicative groups with identity elements
e1, eo. Further letH; be a subgroup aoffy, and H, a subgroup of7s. Prove the following assertions:

@ fler) = ea.

(b) f(a=') = f(a)~tforallac G.

(©) f(H1)={az|a2= f(a1)forsomea; € H;} is a subgroup ofs.

(d) f~'(Hz2) = {a1 | f(a1) € Hy} is a subgroup o .

(e) Letay = f(ay) for somea; € G;. Prove or disproveord a; = ord as.

() Repeat Part () assuming thjats an isomorphism.

(g) H; x Hsis asubgroup of?; x Gs.

Let G be a finite group, and/, K subgroups of> with relatively prime orders. Prove that N K = {e}.
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Let G be a (multiplicative) groupH a subgroup of7, anda, b € G. Prove that the following conditions are
equivalent.

() Ha = Hb.
(i) b € Ha.
(iii) ab~! € H.

Let G be a finite cyclic group.

(a) Prove that every subgroup 6f is cyclic.
(b) Let H, K be subgroups ofr of respective orders, t. What is the order off N K?

Compute the multiplicative inverse & modulo71.
Compute the order af9 in the multiplicative grouZs,.

Let G be an Abelian group. An elemeatc G is called atorsion element of G if ord « is finite. Prove that
the set of all torsion elements 6fis a subgroup ofs.

Prove that for any integet > 3 the multiplicative groupZs;. is not cyclic. (Hint: You may look at the
element"~1 + 1))

Prove that the only automorphisms (@, +) are the identity map and the map that seads —a.

Let G be a group with identity andH # {e} a subgroup of7. Prove or disprove: The only homomorphism
G/H — Gisthe mamH — eforalla € G.

Let G be a finite cyclic group of order:, r a divisor ofm, H a subgroup ot of orderr, anda € G. Prove
thata € H if and only if a” = e, wheree is the identity element off. Demonstrate by an example that this
result need not hold i is not cyclic.

LetGq,Go, ..., Gy, be groups andr = G x Gy X --- x G,,. Let eachG; be finite of ordem;. Establish
thatG is cyclic if and only if each; is cyclic andged(m;, m;) = 1 fori # j.

Let G be a finite Abelian group (with identity) in which the number of elemenissatisfyingz™ = e is at
mostn for everyn € N. Prove that7 is cyclic.
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