
CS21001 Discrete Structures, Autumn 2007

Tutorial 10: November 1 and 8, 2007

1 (a) Define an operation∗ onR asx ∗ y = x + y + xy. Prove or disprove:(R, ∗) is a group.

Solution [Closure] Obvious.

[Associativity] We have(x∗y)∗z = (x+y+xy)∗z = (x+y+xy)+z+(x+y+xy)z = x+y+z+xy+xz+
yz+xyz andx∗(y∗z) = x∗(y+z+yz) = x+(y+z+yz)+x(y+z+yz) = x+y+z+xy+xz+yz+xyz,
i.e.,(x ∗ y) ∗ z = x ∗ (y ∗ z).

[Identity] It is easy to check that0 is the identity with respect to∗.

[Inverse] Letx ∈ R have the inversey ∈ R, i.e.,x ∗ y = x + y + xy = 0, i.e.,y = −x
1+x

, i.e.,y exists if and
only if x 6= −1. Since−1 does not have an inverse under∗, (R, ∗) is not a group.

(b) Prove or disprove:(R \ {−1}, ∗) is a group.

Solution It only remains to check the closure property. Takex, y ∈ R, x, y 6= 1. Then(1 + x)(1 + y) 6= 0,
i.e.,x + y + xy 6= −1, i.e.,R \ {−1} is closed under∗.

2 Let S be the set of all functionsZ → Z. Define addition of functions inZ as(f + g)(n) = f(n) + g(n) for
all n ∈ Z. Prove thatS is an Abelian group under this addition.

Solution [Closure] Obvious.

[Associativity] ((f + g)+h)(n) = (f + g)(n)+h(n) = (f(n)+ g(n))+h(n) = f(n)+ (g(n)+h(n)) =
f(n) + (g + h)(n) = (f + (g + h))(n) for all n ∈ Z.

[Identity] The zero function that takes everyn 7→ 0.

[Inverse] (−f)(n) = −(f(n)) for everyf ∈ S.

[Commutativity] (f + g)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n) for all n ∈ Z.

3 Prove that the setAutG of all automorphisms of a groupG is a group under composition of functions.

Solution Let f, g, h ∈ Aut G be arbitrary.

[Closure] (f ◦ g)(mn) = f(g(mn)) = f(g(m)g(n)) = f(g(m))f(g(n)) = (f ◦ g)(m)(f ◦ g)(n) for all
n ∈ Z. That is,f ◦ g is a group homomorphism. Moreover, the composition of two bijections is again a
bijection.

[Associativity] Function composition is associative.

[Identity] The identity functionidG is an automorphism ofG.

[Inverse] An automorphism is invertible as a function and the inverse map is again a homomorphism and
bijective.

4 Prove thatAut Zn
∼= Z∗

n.

Solution Define a functionϕ : Aut Zn → Z∗

n asϕ(f) = f(1).

[ϕ is well-defined] (Zn,+) is a cyclic group generated by1. In fact, a homomorphismf of Zn is fully
specified byf(1), and for anya ∈ Zn, we havef(a) = a× f(1) (mod n). Now,f is a bijective if and only
if 0, f(1), 2f(1), . . . , (n − 1)f(1) exhaust all elements ofZn, i.e., if and only ifgcd(f(1), n) = 1, i.e., if
and only iff(1) ∈ Z∗

n.

[ϕ is a group homomorphism] Takef, g ∈ Aut Z∗

n. Then fora ∈ Zn, we haveϕ(f ◦ g) = (f ◦ g)(1) =
f(g(1)) = f(1)g(1) = ϕ(f)ϕ(g).

[ϕ is injective] If ϕ(f) = ϕ(g), we havef(1) = g(1), i.e.,f(a) = af(1) = ag(1) = g(a) for all a ∈ Zn,
i.e.,f = g.

[ϕ is surjective] Take anyx ∈ Z∗

n. Then the functionf : Zn → Zn mappinga to xa (mod n) is clearly an
automorphism ofZn, and we haveϕ(f) = f(1) = x.
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5 Let G be a (multiplicative) group and letH,K be subgroups ofG. Prove the following assertions.

(a) H ∪ K is a subgroup ofG if and only if H ⊆ K or K ⊆ H.

Solution [If] If H ⊆ K, thenH ∪ K = K, whereas ifK ⊆ H, thenH ∪ K = H. In either case,H ∪ K
is a subgroup ofG.

[Only if] Suppose thatH ∪ K is a subgroup ofG, but neitherH ⊆ K norK ⊆ H is true. Then there exist
a ∈ H \K andb ∈ K \H. Sincea, b ∈ H ∪K andH ∪K is a subgroup ofG, we haveab ∈ H ∪K, i.e.,
ab ∈ H or ab ∈ K. If ab ∈ H, thenb = a−1(ab) ∈ H, a contradiction. On the other hand, ifab ∈ K, then
a = (ab)b−1 ∈ H, a contradiction again.

(b) HK is a subgroup ofG if and only if HK = KH.

Solution [If] Take arbitrary elementsa = h1k1 andb = h2k2 in HK (with h1, h2 ∈ H andk1, k2 ∈ K).
But thenab−1 = (h1k1)(k

−1
2 h−1

2 ) = h1(k3h
−1
2 ), wherek3 = k1k

−1
2 ∈ K. SinceHK = KH, we have

h4 ∈ H andk4 ∈ K such thatk3h
−1
2 = h4k4. But thenab−1 = (h1h4)k4 ∈ HK.

[Only if] If HK is a subgroup ofG, we have(HK)−1 = HK. But (HK)−1 = K−1H−1 = KH.

6 Let H be a subgroup ofG with index [G : H] = 2. Prove thatH ⊳ G.

Solution There are two right cosets ofH in G, namely,H itself andG \ H. Thus fora ∈ G, we have

aH =

{

H if a ∈ H,
G \ H if a /∈ H.

Likewise,Ha =

{

H if a ∈ H,
G \ H if a /∈ H.

7 Let G be a finite multiplicative group andh = ord a for somea ∈ G.

(a) an = e if and only if h | n.

Solution [if] Let n = th. Thenan = (ah)t = et = e.

[Only if] Supposean = e, wheren = qh + r with 0 6 r < h. Sinceah = e, it follows thatar = e. Since
ord a is the smallest positive integerh with the propertyah = e, we must haver = 0, i.e., n = qh is an
integral multiple ofh.

(b) Prove thatord(ak) = h
gcd(h,k) for anyk ∈ Z.

Solution Let r = ord(ak). We have(ak)
h

gcd(h,k) = (ah)
k

gcd(h,k) = e (sinceah = e and k
gcd(h,k) is an

integer), sor 6 h
gcd(h,k) . Also (ak)r = e, so by Part (a),h | kr, i.e., h

gcd(h,k) | k
gcd(h,k)r. Since h

gcd(h,k) and
k

gcd(h,k) are coprime, we have h
gcd(h,k) | r, i.e., h

gcd(h,k) 6 r.

8 Let n ∈ N, n 6= 0. Prove that the only homomorphismZn → Z is the zero map.

Solution Let f ∈ Hom(Zn, Z) anda = f(1). Since1 + 1 + · · · + 1 (n times) = 0 in Zn, we have
0 = f(0) = nf(1) = na. Sincen 6= 0, we havea = 0, i.e.,f(1) = 0. Since1 generatesZn, it follows that
f is the zero map.

Additional exercises

9 Which of the following are semigroups? Monoids? Groups?

(a) The set of all (univariate) polynomials with integer coefficients under polynomial addition.
(b) The set of all polynomials with rational coefficients under polynomial addition.
(c) The set of all non-zero polynomials with integer coefficients under polynomial multiplication.
(d) The set of all non-zero polynomials with rational coefficients under polynomial multiplication.
(e) The set of all non-constant polynomials with integer coefficients under polynomial addition.
(f) The set of all non-constant polynomials with rational coefficients under polynomial multiplication.
(g) The set{1,−1, i,−i} under multiplication, wherei is a complex square root of unity.
(h) {a + b

√
5 | a, b ∈ Z} under addition. The same set under multiplication.

(i) {a + b
√

5 | a, b ∈ Q} under addition. The same set under multiplication.
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(j) {a + bi | a, b ∈ Z} under addition. The same set under multiplication.
(k) {a + bi | a, b ∈ Q} under addition. The same set under multiplication.

10 Prove that:

(a) Any group of order4 is Abelian.
(b) Any cyclic group is Abelian.
(c) Any group of prime order is cyclic.
(d) Any Abelian group of square-free order is cyclic.

11 Let G be a group,a, b ∈ G, m = ord a, andn = ord b. Assume thatm,n < ∞.

(a) Prove or disprove:ord(ab) = mn.
(b) Prove or disprove: Ifgcd(m,n) = 1, thenord(ab) = mn.
(c) Prove or disprove: IfG is Abelian andgcd(m,n) = 1, thenord(ab) = mn.
(d) If G is a finite cyclic group, prove thatG has exactlyφ(r) generators, wherer is the order ofG andφ
is Euler’s totient function.

12 Let G be a multiplicative group anda ∈ G.

(a) Define thecentralizer of a asC(a) = {b ∈ G | ab = ba}. Prove thatC(a) is a subgroup ofG. What
is C(a) if G is Abelian?

(b) Two elementsa, b ∈ G are said to beconjugate (to one another), denoteda ∼ b, if b = xax−1 for
somex ∈ G. Prove that conjugacy is an equivalence relation onG.

(c) Prove that ifa ∼ b, thenord a = ord b.

13 (a) Let G be the set of all invertible (i.e., non-singular)2 × 2 matrices with real entries. Prove thatG is a
group under matrix multiplication.

(b) Define thecenter Z(G) of G as:

Z(G) = {A ∈ G | AP = PA for all P ∈ G} .

Prove thatZ(G) is a normal subgroup ofG.

(c) Derive thatZ(G) =

{(

a 0
0 a

)

| a ∈ R, a 6= 0

}

.

(d) A matrix A ∈ G is said to besimilar to a matrixB ∈ G if B = PAP−1 for someP ∈ G. Prove that
similarity is an equivalence relation onG.

(e) For any fixedP ∈ G, define the mapfP : G → G asfP (A) = PAP−1. Prove thatfP is a group
isomorphism.

(f) Prove thatfP is the identity map onG if and only if P ∈ Z(G).

14 Let f : G1 → G2 be a group homomorphism, whereG1, G2 are multiplicative groups with identity elements
e1, e2. Further letH1 be a subgroup ofG1, andH2 a subgroup ofG2. Prove the following assertions:

(a) f(e1) = e2.
(b) f(a−1) = f(a)−1 for all a ∈ G1.
(c) f(H1) = {a2 | a2 = f(a1) for somea1 ∈ H1} is a subgroup ofG2.
(d) f−1(H2) = {a1 | f(a1) ∈ H2} is a subgroup ofG1.
(e) Let a2 = f(a1) for somea1 ∈ G1. Prove or disprove:ord a1 = ord a2.
(f) Repeat Part (e) assuming thatf is an isomorphism.
(g) H1 × H2 is a subgroup ofG1 × G2.

15 Let G be a finite group, andH,K subgroups ofG with relatively prime orders. Prove thatH ∩ K = {e}.
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16 Let G be a (multiplicative) group,H a subgroup ofG, anda, b ∈ G. Prove that the following conditions are
equivalent.

(i) Ha = Hb.
(ii) b ∈ Ha.
(iii) ab−1 ∈ H.

17 Let G be a finite cyclic group.

(a) Prove that every subgroup ofG is cyclic.
(b) Let H,K be subgroups ofG of respective orderss, t. What is the order ofH ∩ K?

18 Compute the multiplicative inverse of17 modulo71.

19 Compute the order of19 in the multiplicative groupZ∗

32.

20 Let G be an Abelian group. An elementa ∈ G is called atorsion element of G if ord a is finite. Prove that
the set of all torsion elements ofG is a subgroup ofG.

21 Prove that for any integern > 3 the multiplicative groupZ∗

2n is not cyclic. (Hint: You may look at the
elements2n−1 ± 1.)

22 Prove that the only automorphisms of(Z,+) are the identity map and the map that sendsa 7→ −a.

23 LetG be a group with identitye andH 6= {e} a subgroup ofG. Prove or disprove: The only homomorphism
G/H → G is the mapaH 7→ e for all a ∈ G.

24 Let G be a finite cyclic group of orderm, r a divisor ofm, H a subgroup ofG of orderr, anda ∈ G. Prove
thata ∈ H if and only if ar = e, wheree is the identity element ofG. Demonstrate by an example that this
result need not hold ifG is not cyclic.

25 Let G1, G2, . . . , Gn be groups andG = G1 × G2 × · · · × Gn. Let eachGi be finite of ordermi. Establish
thatG is cyclic if and only if eachGi is cyclic andgcd(mi,mj) = 1 for i 6= j.

26 Let G be a finite Abelian group (with identitye) in which the number of elementsx satisfyingxn = e is at
mostn for everyn ∈ N. Prove thatG is cyclic.
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