
CS21001 Discrete Structures, Autumn 2007

Tutorial 8: September 27, 2007

1 Let S(n, k) denote Stirling numbers of the second kind and
{n

k

}

denote Stirling subset numbers. Prove that
S(n, k) =

{n
k

}

for all n, k ∈ N.

Solution We proceed by induction onn. For n = 0, we havexn = x0 = 1 = x0, i.e.,S(n, 0) = 1 and

S(n, k) = 0 for all k > 1. On the other hand, by definition
{

0
0

}

= 1 and
{

0
k

}

= 0 for all k > 1.

Now supposen > 1 andS(n − 1, k) =
{

n−1
k

}

for all k ∈ N. But thenxn−1 =
∑

k∈N S(n − 1, k)xk =
∑

k∈N

{

n−1
k

}

xk. Multiplication byx yieldsxn =
∑

k∈N

{

n−1
k

}

xk×x. Nowxk×x = xk×(x−k)+xk×
k = xk+1+kxk. Therefore,xn =

∑

k∈N

{

n−1
k

}

(xk+1+kxk) = 0×x0+
∑

n>1

({

n−1
k−1

}

+ k
{

n−1
k

})

xk =
∑

n∈N

{n
k

}

xk, i.e.,S(n, k) =
{n

k

}

for all k ∈ N.

2 (a) Let Cn, n ∈ N, denote the sequence of Catalan numbers, and letC(x) = C0 + C1x + C2x
2 + · · · +

Cnxn + · · · the corresponding power series. Prove thatC(x) = 1−
√

1−4x
2x

.

Solution We haveC(x)C(x) = C0C0 + (C0C1 + C1C0)x + (C0C2 + C1C1 + C2C0)x
2 + · · ·+ (C0Cn +

C1Cn−1 + · · ·+CnC0)x
n + · · · = C1 +C2x+C3x

2 + · · ·+Cn+1x
n + · · · , i.e.,xC(x)2 = −C0 +C(x) =

−1+ C(x), i.e.,xC(x)2 −C(x)+ 1 = 0. Therefore,C(x) = 1±
√

1−4x
2x

. Taking the plus sign of the square-
root gives a Laurent series with a non-zero coefficient ofx−1, whereasC(x) is a power series. Therefore,

C(x) = 1−
√

1−4x
2x

.

(b) Deduce thatCn = 1
n+1

(2n
n

)

.

Solution Expand
√

1 − 4x by the generalized binomial theorem:Cn =
−(−1)n+1 1

2(
1

2
−1)( 1

2
−2)···( 1

2
−n)4n+1

(n+1)!×2

= 2n×1×3×5×···×(2n−1)
(n+1)! = 1

n+1 × (2n)!
n!n! = 1

n+1

(2n
n

)

.

3 (a) Let An denote the set of all strings withn left parentheses andn right parentheses such that the
parentheses are properly balanced (i.e., nested). For example, taken = 3. The strings()()(), (())(),
()(()), (()()), and((())) are all the strings of length2n = 6 with balanced parentheses. On the other hand,
())(() is not a member ofA3, since the second right parenthesis is not balanced by a leftparenthesis, and
the second left parenthesis is not balanced by a right parenthesis. Prove that the size ofAn is Cn.

Solution Consider an explicit parenthesizing of a product ofn + 1 matricesM0,M1, . . . ,Mn, i.e., a
pair of matching parentheses identifies each of then products taken (including the outermost product).
Suppose also that each multiplication is shown explicitly by a sign, say×. First delete all the matrix
arguments and all the left parentheses, then replace each multiplication sign by a left parenthesis. This
results in a balanced expression withn left andn right parentheses. For example, taken = 3. The product
((M0 ×M1)× (M2 ×M3)) translates to the string()(()), whereas the product(M0 × (M1 × (M2 ×M3)))
translates to((())). Convince yourself that this association provides a one-to-one correspondence between
the set of all fully parenthesized products ofM0,M1, . . . ,Mn and the setAn.

(b) Let there be2n distinct points on a circle. In how many ways can you connect these points ton chords
so that no two chords intersect inside the circle?

Solution This count is againCn. Name the pointsP1, P2, . . . , P2n clockwise along the circle (starting
from an arbitrary point). Letα = a1a2 . . . a2n be a string of length2n with balanced parenthesis. For each
matching pair of left parenthesisai and right parenthesisaj, join the pointsPi andPj to form a chord. Since
α is balanced, no two chords intersect inside the circle. Convince yourself that this association provides a
bijective correspondence between the set of all balanced strings ofn left andn right parentheses and the set
of all non-intersecting chord constructions.
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Additional exercises

4 Let n be a positive integer. Byφ(n), denote the number of integersa between1 andn (both inclusive) with
gcd(a, n) = 1. Assume thatn = pe1

1 pe2

2 · · · per

r be the prime factorization ofn (with eachei > 0). Use the

principle of inclusion and exclusion to derive the formulaφ(n) = n
(

1 − 1
p1

) (

1 − 1
p2

)

· · ·
(

1 − 1
pr

)

.

5 Let An denote the set ofn-digit integers, i.e., integers in the range10n−1 to 10n − 1. How many elements
of An do not contain repeated digits?

6 Let s(n, k) denote Stirling numbers of the first kind and
[n

k

]

denote Stirling cycle numbers. Show that
[n

k

]

= (−1)n−ks(n, k) for all n, k ∈ N.

7 Without using generating functions, prove thatCn = 1
n+1

(2n
n

)

.

8 Prove the following identities.

(a)
{n

1

}

= 1,
{n

2

}

= 2n−1 − 1,
{

n
n−1

}

=
(n
2

)

, and
{n

n

}

= 1.

(b)
[n

1

]

= (n − 1)!,
[n

2

]

= (n − 1)!Hn−1,
[

n
n−3

]

=
(n
2

)(n
4

)

,
[

n
n−2

]

= 1
4(3n − 1)

(n
3

)

,
[

n
n−1

]

=
(n
2

)

, and
[n

n

]

= 1.
(c)

∑n
k=0

[n
k

]

= n!.

9 TheBell numberBn is defined asBn =
∑n

k=0

{n
k

}

and equals the total number of partitions of a set ofn
elements. Prove thatBn+1 =

∑n
k=0

(n
k

)

Bk.

10 Prove that each of the following equalsCn.

(a) The number of sequencesa1a2 . . . a2n of length 2n with eachai ∈ {1,−1},
∑2n

i=1 ai = 0, and
∑j

i=1 ai > 0 for all j ∈ {1, 2, . . . , 2n}.

(b) The number of (rooted) binary trees withn internal vertices. (An internal node has at least one child.)

(c) The number of paths from the lower left corner to the upper right corner in ann × n grid, that do not
rise above the grid diagonal connecting the two corners mentioned above.

(d) The number of ways an(n + 2)-gon can be cut into triangles.

11 Use the theory of generating functions to find explicit formulas foran defined recursively as

(a) a0 = 1,

an = an−1 + an−2 + an−3 + · · · + a0 for all n > 1.

(b) a0 = 1,

an = an−1 + 2an−2 + 3an−3 + · · · + na0 for all n > 1.

12 Let a(x), b(x), c(x) be power series. Prove thata(x)(b(x) + c(x)) = a(x)b(x) + a(x)c(x).

13 Theformal derivativea′(x) of a power seriesa(x) = a0 + a1x + a2x
2 + · · ·+ anxn + · · · is defined as the

power seriesa′(x) = a1 + 2a2x + 3a3x
2 + · · ·+ nanxn−1 + · · · . For power series expressionsa(x), b(x),

prove that

(a) (a(x) + b(x))′ = a′(x) + b′(x).
(b) (a(x)b(x))′ = a′(x)b(x) + a(x)b′(x).

14 Determine how to add, subtract, and multiply two Laurent series and invert a non-zero Laurent series.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India
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A primer on power series and Laurent series

A power seriesa(x) in one variable (or indeterminate)x is an infinite expression of the forma(x) =
a0 + a1x+ a2x

2 + · · ·+ anxn + · · · , where the coefficientsa0, a1, a2, . . . are taken from a standard set like
R, C, Q, or Z. In order to study sequences and generating functions, we need to work with these infinite
expressions. In this (and many other) contexts, a power series is taken asformal. This means that we do not
bother about the convergence issues of these series. Indeed, we do not need to assign numerical values to
the variablex. The set of all formal power series over a set (a field or more generally a ring)A is denoted
by A[[x]].

We first define the standard arithmetic operations on two power seriesa(x) = a0 + a1x + a2x
2 + · · · and

b(x) = b0 + b1x + b2x
2 + · · · .

a(x) + b(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · + (an + bn)xn + · · · ,

a(x)b(x) = (a0b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + · · · +

(a0bn + a1bn−1 + · · · + anb0)x
n + · · · .

The additive inverse ofa(x) is the power series

−a(x) = (−a0) + (−a1)x + (−a2)x
2 + · · · + (−an)xn + · · · .

The multiplicative inverse ofa(x) is defined as the (unique) power seriesu(x) satisfyinga(x)u(x) = 1,
provided that such a series exists. The following result provides a necessary and sufficient condition for the
invertibility of a power series.

Proposition A power seriesa(x) = a0+a1x+a2x
2+· · · ∈ A[x] is invertible if and only ifa0 is invertible

in A. In particular, ifA is a field, thena(x) is invertible if and only ifa0 6= 0.

Proof [only if] Let u(x) = u0 + u1x + u2x
2 + · · · be the inverse ofa(x). Thena0u0 = 1, i.e., a0 is

invertible inA (having the inversea−1
0 = u0).

[if] Suppose thata0 is invertible in A. We inductively compute elementsu0, u1, u2, . . . ∈ A such that
a(x)u(x) = 1. First takeu0 = a−1

0 . Then assume thatu0, u1, . . . , un−1 are already computed for somen >

1. The conditiona(x)u(x) = 1 demandsa0un +a1un−1 + · · ·+an−1u1 +anu0 = 0. Sincea0 is invertible
in A and sinceu0, u1, . . . , un−1 are available, we obtainun asun = −a−1

0 (a1un−1 + · · ·+an−1u1 +anu0).
This completes the inductive construction. •

It is interesting to highlight that the only invertible polynomials are non-zero constants. On the other hand,
a non-constant power series may have an inverse. For example, (1 + x)−1 = 1 − x + x2 − x3 + · · · +
(−1)nxn + · · · .
The only invertible integers are±1. In order to make every non-zero integer invertible, we embeddedZ in
a bigger structureQ. Analogously, in order to invert every non-zero polynomial, we invent the notion of
rational functions, i.e., expressions of the formf(x)/g(x) for polynomialsf(x), g(x) with g(x) 6= 0. For
power series too, we define the structure

A((x)) = {a(x)/b(x) | a(x), b(x) ∈ A[[x]], b(x) 6= 0}.

Elements ofA((x)) are, therefore, quotients of power series expressions. It turns out that these quotients
have an easier description. For simplicity, we restrict ourstudy only to the case thatA is a field (likeR, C, Q)
in which every non-zero element is invertible.

Let a(x), b(x) ∈ A[[x]] with b(x) 6= 0. If b(x) itself is invertible inA[[x]], thenb(x)−1 = u(x) ∈ A[[x]]
anda(x)/b(x) = a(x)b(x)−1 = a(x)u(x) is a power series too. So assume thatb(x) is non-invertible
in A[[x]], i.e., b(x) = brx

r + br+1x
r+1 + br+2x

r+2 + · · · with br 6= 0 for somer > 1. We have
b(x) = xrc(x), wherec(x) = br + br+1x + br+2x

2 + · · · . Sincebr 6= 0, c(x) is invertible inA[[x]].
Write c(x)−1 = u(x) = u0 + u1x + u2x

2 + · · · . Thenb(x)−1 = x−ru(x) anda(x)/b(x) = x−ra(x)u(x).
Let a(x)u(x) = v(x) = v0 + v1x + v2x

2 + · · · . Thena(x)/b(x) = x−rv(x) = v0x
−r + v1x

−r+1 +
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v2x
−r+2 + · · · + vr−1x

−1 + vr + vr+1x + vr+2x
2 + · · · + vr+nxn + · · · . That is,a(x)/b(x) is a power

series plus afinite number of terms involving negative powers ofx. Such a series is called aLaurent series,
andA((x)) turns out to be the set of all Laurent series expressions, i.e.,

A((x)) =
{

a−rx
−r + a−r+1x

−r+1 + · · · + a−1x
−1 + a0 + a1x + a2x

2 + · · · + anxn + · · · |

r ∈ N, ai ∈ A for all i = −r,−r + 1, . . . ,−1, 0, 1, 2, . . .
}

.

One can readily extend arithmetic operations (addition, multiplication, negation, and inverse) to Laurent
series expressions. Indeed, ifA is a field, then so also isA((x)).
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