CS21001 Discrete Structures, Autumn 2007
Tutorial 8: September 27, 2007

1 LetS(n, k) denote Stirling numbers of the second kind grfd: denote Stirling subset numbers. Prove that
S(n,k)={}}foralln,keN.

Solution We proceed by induction on. Forn = 0, we haver” = 2% = 1 = 22, i.e.,,S(n,0) = 1 and
S(n, k) = 0 for all k > 1. On the other hand, by definitio{18} =1 and{g} =0forall k> 1.

Now suppose: > 1 andS(n — 1,k) = {";1} forall k € N. Butthenz"~t = 3, .y S(n — 1, k)2k =
S keN {";1 } z£. Multiplication byz yieldsz™ = .o {";1 } ok xz. Nowzk x x = 2k x (2 — k) + 25 x

k= ahtli k. Therefores™ = Yoy { "3} (it k) = 02450y ({33 + {751 }) ot =
Snen {3} 2k ie,S(n, k) ={}} forall k € N.

2 (a) LetC,,n € N, denote the sequence of Catalan numbers, and(le} = Cy + Cyz + Coz? + --- +
Cpha™ + - - - the corresponding power series. Prove tiat) = =122,
Solution We haveC(x)C(x) = CoCo+ (COCl + ClCo)x + (C()CQ +C1Cy + CQC())-Z'2 R (C()Cn +
C1Cpoi+-++CrCo)a"+ - = C1+ Cox +C32% + -+ -+ Cpya™ + - - i.e.,20(x)? = —Cy+C(z) =
~1+C(x),i.e,2C(z)? — C(z) + 1 = 0. ThereforeC'(z) = 1= Taking the plus sign of the square-

root gives a Laurent series with a non-zero coefficient of, whereasC(z) is a power series. Therefore,
C((L’) — 1—\/21—4:v.
X

(b) Deduce thaC, = —1; (*").

—(1)

Solution Expandy/1 — 4x by the generalized binomial theorerf;, =

_ 2"Xx1x3x5x--x(2n—=1) _ 1 (2n)! L(Q")
- (n+1)! ’

n+1 nn! 7 n+l\n

3 (a) Let A, denote the set of all strings with left parentheses and right parentheses such that the
parentheses are properly balanced (i.e., nested). Forpeataken = 3. The strings()()(), (())(),
00()), (00), and((())) are all the strings of lengthn. = 6 with balanced parentheses. On the other hand,
())(() is not a member ofi3, since the second right parenthesis is not balanced by pdeénthesis, and
the second left parenthesis is not balanced by a right gageist Prove that the size df, is C),.

Solution Consider an explicit parenthesizing of a productrof- 1 matricesMy, My, ..., M,, i.e., a
pair of matching parentheses identifies each of+thgroducts taken (including the outermost product).
Suppose also that each multiplication is shown explicityyabsign, sayx. First delete all the matrix
arguments and all the left parentheses, then replace ealtiplioation sign by a left parenthesis. This
results in a balanced expression witheft andn right parentheses. For example, take= 3. The product
((My x M) x (M x Ms)) translates to the string(()), whereas the produ¢iVy x (M; x (My x Ms)))
translates td(())). Convince yourself that this association provides a oreri® correspondence between
the set of all fully parenthesized productsiaf), My, ..., M, and the sed,,.

(b) Letthere be2n distinct points on a circle. In how many ways can you conreesé points ta chords
so that no two chords intersect inside the circle?

Solution This count is agairC,,. Name the pointsP;, Ps, ..., P,, clockwise along the circle (starting
from an arbitrary point). Letvr = aqas . .. as, be a string of lengti2n with balanced parenthesis. For each
matching pair of left parenthesig and right parenthesis;, join the pointsP; and P; to form a chord. Since

« is balanced, no two chords intersect inside the circle. @mavyourself that this association provides a
bijective correspondence between the set of all balanced)stofr left andn right parentheses and the set
of all non-intersecting chord constructions.



Additional exercises

4 Letn be a positive integer. Bg(n), denote the number of integetdetweent andn (both inclusive) with
ged(a,n) = 1. Assume that = p7*p5? - - - p&~ be the prime factorization of (with eache; > 0). Use the

principle of inclusion and exclusion to derive the formyia) = n (1 — p%) (1 — p%) e (1 — pi)

5 Let A, denote the set of-digit integers, i.e., integers in the rang@” ! to 10" — 1. How many elements
of A,, do not contain repeated digits?

6 Let s(n, k) denote Stirling numbers of the first kind afifl| denote Stirling cycle numbers. Show that
(%] = (=1)"%s(n,k) forall n,k € N.

7 Without using generating functions, prove tl@at = %ﬂ(?)-

8 Prove the following identities.
@ {1} =1{3=2""=1,{," } = ().and{}} =1.
() [1]= (-1, [3] = (=D Hey, [5] = G0 [] = 16 =1@), [1] = (), and
=1
© Yk-olp] =nl

9 TheBell numberB,, is defined as3,, = >_;i_, {  } and equals the total number of partitions of a sei of
elements. Prove that, ., = > 1 (1) Bx.

10 Prove that each of the following equals,.

(@ The number of sequencesas ... az, of length 2n with eacha; € {1,-1}, S2na; = 0, and

J_ya; =0forallj € {1,2,...,2n}.

(b) The number of (rooted) binary trees withinternal vertices. (An internal node has at least one ¢child.

(©) The number of paths from the lower left corner to the uppeéntrigorner in am x n grid, that do not
rise above the grid diagonal connecting the two corners imeed above.

(d) The number of ways afn + 2)-gon can be cut into triangles.

11 Use the theory of generating functions to find explicit fotasufor a,, defined recursively as

(a) ap = 17
an = Gp_1+an_o+ap_g+---+ag foral n > 1.
(b) a = 1,
an = Qp_1+2ap_2+3ap_3+---+mnag forall n> 1.

12 Leta(x),b(z), c(x) be power series. Prove thatr)(b(z) + c(z)) = a(z)b(x) + a(x)c(x).

13 Theformal derivativea’ () of a power seriea(x) = ag + a1x + azx? + - - - + ap,a™ + - - - is defined as the
power series’ (z) = a; + 2asx + 3azxz® + - - - + na,z" "' + - - -. For power series expressioaér), b(z),
prove that
@ (a(z) +b(z)) = d'(z) + V' (z).

(0) (a(x)b(x)) = a'(x)b(x) + a(x)b'(x).

T
T

14 Determine how to add, subtract, and multiply two Laurenteseand invert a non-zero Laurent series.
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A primer on power seriesand Laurent series

A power seriesa(z) in one variable (or indeterminate) is an infinite expression of the form(z) =
ao+ a1z + asx® + - +ana™ + - - -, where the coefficientsy, a1, as, . . . are taken from a standard set like
R, C, Q, or Z. In order to study sequences and generating functions, e toework with these infinite
expressions. In this (and many other) contexts, a powegseritaken aformal. This means that we do not
bother about the convergence issues of these series. Ingdeatb not need to assign numerical values to
the variablex. The set of all formal power series over a set (a field or moregaly a ring) A is denoted

by Allz]).

We first define the standard arithmetic operations on two peegesa(z) = ag + aix + asx? + - - - and
b(z) = bo + bix + bya® + - --.

a(z) +b(x) = (ag+bo)+ (a1 +b1)x + (ag +bo)x? 4+ + (an +bp)2™ + -+,
a(z)b(z) = (aobo) + (aohy + a1bo)x + (agbs + arby + asbo)z? + - - - +
(aobn 4+ a1bp_1+ -+ anbo)az" + -

The additive inverse af(z) is the power series
—a(z) = (—ag) + (—a1)z + (—az)z? + -+ + (—ap)z" + - .

The multiplicative inverse ofi(z) is defined as the (unique) power serigg) satisfyinga(z)u(z) = 1,
provided that such a series exists. The following resultigies a necessary and sufficient condition for the
invertibility of a power series.

Proposition A power seriesi(z) = ag+ajz+ax®+- - - € Alz]is invertible if and only ifag is invertible
in A. In particular, ifA is a field, theru(z) is invertible if and only ifay # 0.

Proof [only if] Let u(x) = ug + uix + ugx?® + --- be the inverse ofi(z). Thenaguy = 1, i.e., ag is

invertible in A (having the inversezg1 = up).

[if] Suppose thatag is invertible in A. We inductively compute elementg), uq,us,... € A such that
a(x)u(z) = 1. First takeuy = agl. Then assume thak, uq, . .., u,_1 are already computed for some>

1. The conditiona(z)u(x) = 1 demandswu, + ajun—1 + - - - + ap—1u1 + ayug = 0. Sinceqy is invertible

in A and sinceug, u1, ..., u,_1 are available, we obtain, asu,, = —ao‘l(alun_l +- - Fap_1u+anyug).

This completes the inductive construction. °

It is interesting to highlight that the only invertible polymials are non-zero constants. On the other hand,
a non-constant power series may have an inverse. For exafiiplexr) ™t =1 -2 + 22 — 2% + ... +
(=1)"a™ 4 - - .

The only invertible integers ar¢1. In order to make every non-zero integer invertible, we edadeelZ in

a bigger structurd). Analogously, in order to invert every non-zero polynomiak invent the notion of
rational functions, i.e., expressions of the foffit) /g(z) for polynomialsf(x), g(x) with g(z) # 0. For
power series too, we define the structure

A((x)) = {a(x)/b(x) | a(x),b(z) € Al[2]], b(x) # 0}.

Elements ofA((x)) are, therefore, quotients of power series expressionaristout that these quotients
have an easier description. For simplicity, we restrictsiudy only to the case thatis a field (likeR, C, Q)

in which every non-zero element is invertible.

Let a(z),b(x) € A[[x]] with b(x) # 0. If b(z) itself is invertible inA[[z]], thenb(z) ™! = u(z) € Al[z]]
anda(x)/b(z) = a(z)b(x)~! = a(z)u(z) is a power series too. So assume that) is non-invertible
in A[[z]], i.e., b(x) = bya” + bpy1z" T + boyox™ 2 + - with b, # 0 for somer > 1. We have

b(z) = x"c(z), wherec(z) = by + boy17 + boyox? + ---. Sinceb, # 0, ¢(z) is invertible in A[[z]].
Write c(z) ™' = u(z) = ug + w1z + ugx® +---. Thenb(z) ™! = 27 "u(z) anda(z) /b(z) = 2 "a(x)u(x).
Let a(z)u(z) = v(z) = vo + viz + vex® + ---. Thena(z)/b(z) = 27 "v(z) = vor™" + viz "t +

3



voxr "2 4 b v o2 F Vo -+ U™ + - --L Thatis,a(z) /b(x) is a power
series plus dinite number of terms involving negative powersaafSuch a series is calledLaurent series
and A((x)) turns out to be the set of all Laurent series expressions, i.e
A((@) = {aa +a a4 taaT Fagt @zt aga® £ b aga” o |
reN,a; € Aforalli = —r,—r—|—1,...,—1,0,1,2,...}.

One can readily extend arithmetic operations (additionltiplication, negation, and inverse) to Laurent
series expressions. Indeed/Afis a field, then so also id ((z)).



