- 1 Let $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$. In this exercise, we show that the sets [0,1), \mathbb{R}_+ , and \mathbb{R} are equinumerous to one another. To that effect, we propose explicit bijections among them.
 - (a) Provide an explicit bijection $[0,1) \to \mathbb{R}_+$.

Solution Take $f: [0,1) \to \mathbb{R}_+$ as $f(x) = \frac{x}{1-x}$. Some other simple examples are $f(x) = -\log(1-x)$, $f(x) = \tan \frac{\pi x}{2}$, $f(x) = \tan \frac{\pi x}{x+1}$.

(b) Provide an explicit bijection $\mathbb{R}_+ \to \mathbb{R}$.

Solution For $n \in \mathbb{Z}$, let I_n denote the real interval [n, n + 1). We have the disjoint unions $\mathbb{R}_+ = \bigcup_{n \in \mathbb{N}} I_n$ and $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} I_n$. Define a bijection $g : \mathbb{R}_+ \to \mathbb{R}$ as follows. Take $x \in \mathbb{R}_+$. Let $\{x\} = x - \lfloor x \rfloor$ denote the fractional part of x. We have $x \in I_n$, where $n = \lfloor x \rfloor$. If n = 2k (even), define $g(x) = k + \{x\}$. If n = 2k + 1 (odd), define $g(x) = -(k + 1) + \{x\}$. More intuitively, [0, 1) is relocated to [0, 1), [1, 2) to [-1, 0), [2, 3) to [1, 2), [3, 4) to [-2, -1), [4, 5) to [2, 3), [5, 6) to [-3, -2), and so on.

(c) Conclude that the interval [0,1) is equinumerous with the entire real line \mathbb{R} .

Solution The function $g \circ f$ is an explicit bijection $[0,1) \to \mathbb{R}$.

2 Let *A* be a set equinumerous with \mathbb{R} and *B* a set equinumerous with \mathbb{N} . Prove that the Cartesian product $A \times B$ is equinumerous with \mathbb{R} .

Solution There exist a bijection $f : A \to [0, 1)$ and a bijection $g : B \to \mathbb{Z}$. But then $h = f \times g : A \times B \to [0, 1) \times \mathbb{Z}$, $(a, b) \mapsto (f(a), g(b))$ is a bijection. Finally, the function $h' : [0, 1) \times \mathbb{Z} \to \mathbb{R}$ taking $(a, n) \mapsto a + n$ is also a bijection. Thus, $h' \circ h$ is a bijection between $A \times B$ and \mathbb{R} . (Remark: We have proved that $c \times \aleph_0 = c$.)

3 Prove that the real interval [0,1) is equinumerous with the unit square $S = \{x + iy \mid x, y \in [0,1)\}$ in the complex plane.

Solution The canonical inclusion map $f : [0,1) \to S$, $x \mapsto x + i0$, is injective. For constructing an injective map $g : S \to [0,1)$, let us plan to represent each real number with a terminating decimal expansion as having an infinite number of trailing 0's (instead of an infinite number of trailing 9's). Take $x + iy \in S$, and let $x = 0.x_1x_2x_3...$ and $y = 0.y_1y_2y_3...$ be the decimal expansions of x and y. Define $g(x + iy) = 0.x_1y_1x_2y_2x_3y_3...$ It is easy to check that this g is an injective map. (Note that g is not surjective. For example, the real number 0.4509090909... does not have a pre-image.) (Remark: We have proved that $c \times c = c$.)

- (Remark. We have proved that $c \times c = c$.)
- 4 Provide a diagonalization argument to prove that the set A of all infinite bit sequences is uncountable.

Solution Suppose that A is countable. Then there exists a bijective map $f : \mathbb{N} \to A$. Denote the sequence f(n) as $a_{n0}a_{n1}a_{n2}\ldots$, where each a_{ij} is a bit. Construct an infinite bit sequence $b = b_0b_1b_2\ldots$ as $b_n = \begin{cases} 1 & \text{if } a_{nn} = 0, \\ 0 & \text{if } a_{nn} = 1. \end{cases}$ Since f is surjective, b = f(n) for some $n \in \mathbb{N}$. But b and f(n) differ in the n-th bit position and so cannot be equal, a contradiction.

5 Prove that the set *B* of all infinite subsets of \mathbb{N} is uncountable.

Solution The power set of \mathbb{N} is uncountable. In Tutorial 6, we have proved that the set A of all finite subsets of \mathbb{N} is countable. If B is countable too, then the union $\mathcal{P}(\mathbb{N}) = A \cup B$ also becomes countable. So B has to be uncountable.

Additional exercises

- 6 Provide explicit bijections between the following pairs of sets.
 - (a) The sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
 - (b) The set of rational numbers in the real interval [0,1) and the set \mathbb{Q} of all rational numbers.
 - (c) The set of irrational numbers in the real interval [0, 1) and the set of all irrational numbers.
 - (d) The real interval (0,1) and \mathbb{R} .
 - (e) The real intervals [0, 1) and [a, b) for any $a, b \in \mathbb{R}$, a < b.
 - (f) The real intervals [0,1) and (0,1).
 - (g) The real intervals [0, 1] and (0, 1).
- 7 (a) Prove that the set $\mathbb{Q}[[X]]$ of all power series with rational coefficients is uncountable.

(b) Prove that the set $\mathbb{Q}(X) = \{f(X)/g(X) \mid g(X) \neq 0\}$ of all rational functions with rational coefficients is countable.

(c) Conclude that $\mathbb{Q}[[X]]$ contains a power series which is not the power series expansion of any rational function in $\mathbb{Q}(X)$. Can you identify any such power series explicitly?

- 8 (a) Let A be a finite set of size ≥ 2 . Prove that the set of all functions $\mathbb{N} \to A$ is uncountable.
 - (b) Prove that the set of all functions $\mathbb{N} \to \{0, 1\}$ is equinumerous with \mathbb{R} (i.e., $2^{\aleph_0} = c$).
- 9 Let A, B be sets, where A is equinumerous with \mathbb{R} and B is equinumerous with \mathbb{N} . Prove that $A \cup B$ is equinumerous with \mathbb{R} . (This means $c + \aleph_0 = c$.)
- 10 Prove that the union of two sets each equinumerous with \mathbb{R} is again equinumerous with \mathbb{R} (i.e., c + c = c).
- 11 Prove that the set of all permutations of \mathbb{N} is not countable. (One can show that $\aleph_0! = c$.)
- 12 Let A be a set of size ≥ 2 (A may be infinite). Modify the diagonalization proof to establish that there cannot exist a bijection between A and the set of all *non-empty* subsets of A.
- 13 Let $A = \{1, 2, 3, \dots, 2n\}$ for some $n \ge 1$, and let S be an arbitrary subset of A of size n + 1. Prove that
 - (a) A contains elements x_1, y_1 with $y_1 x_1 = 1$.
 - (b) A contains elements x_2, y_2 with $y_2 x_2 = n$.
 - (c) A contains elements x_3, y_3 with $gcd(x_3, y_3) = 1$.
- 14 (a) Let A be a finite set and $f : \mathbb{N} \to A$ a function. Take any $a \in A$ and denote $a_n = f^n(a)$ for all $n \in \mathbb{N}$. Prove that the sequence a_0, a_1, a_2, \ldots of elements of A must be (eventually) periodic.
 - (b) Let $n \in \mathbb{N}$, $n \ge 2$, and $a \in \mathbb{Z}$ with gcd(a, n) = 1. Prove that $a^h \equiv 1 \pmod{n}$ for some $h \ge 1$.

(c) Prove that for every $n \in \mathbb{N}$, $n \neq 0$, there exists an $m \in \mathbb{N}$, $m \neq 0$, such that n divides the Fibonacci number F_m .

- 15 Suppose that you eat 132 idlis in a total of 77 consecutive days such that
 - 1. You eat only a whole number of idlis per day.
 - 2. You eat at least one idli in each day.

Show that there exists a set of consecutive days during which you eat a total of exactly 21 idlis.

- 16 Suppose that acquaintance is a symmetric relation, i.e., two persons either know each other or are strangers to each each other. Prove that in any group of n persons, $n \ge 2$, there exist two persons having the same number of acquaintances (in that group).
- 17 Let n be an odd positive integer and a_1, a_2, \ldots, a_n a permutation of $1, 2, \ldots, n$. Prove that the product $(a_1 1)(a_2 2) \cdots (a_n n)$ must be even.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India