
CS21001 Discrete Structures, Autumn 2007

Tutorial 6: August 30, 2007

1 (a) Let Hn = 1
1 + 1

2 + · · · + 1
n

denote then-th harmonic number. Prove by induction onn that
H1 + H2 + · · · + Hn = (n + 1)Hn − n for all n ∈ N.

Solution [Basis] Forn = 0, both sides evaluate to0.

[Induction] Suppose for somen > 0, we haveH1 + H2 + · · · + Hn = (n + 1)Hn − n. Then

H1+H2+· · ·+Hn+1 = (H1+H2+· · ·+Hn)+Hn+1 = (n+1)Hn−n+Hn+1 = (n+1)
(

Hn+1 −
1

n+1

)

−

n + Hn+1 = (n + 2)Hn+1 − (n + 1).

(b) Why can’t you proveH1 + H2 + · · · + Hn = (n + 1)Hn − n + 1 by induction onn?

Solution The induction basis does not hold.

2 Assume that the well-ordering principle ofN holds. Prove the principle of weak mathematical induction.

Solution Let P (n) be a proposition involving a variablen ∈ N. It is given thatP (0) is true, and whenever
P (n) is true, so also isP (n + 1). We have to show thatP (n) is true for alln ∈ N. Let S be the subset of
N, containing the integersn for which P (n) is false. We need to show thatS is empty. Suppose not, i.e.,S
is non-empty. But thenS contains a minimum element by the well-ordering principle.Call this minimum
elementn. Clearly,n > 0, sinceP (0) is true by hypothesis. Also by the choice ofn, we haven − 1 /∈ S
(but n − 1 ∈ N). Therefore,P (n − 1) is true, and soP ((n − 1) + 1) = P (n) is also true, a contradiction
to the fact thatn ∈ S.

3 Suppose that we want to prove by induction onn the fact thatP (n) is true for alln ∈ N. How many basis
cases do you have to prove in each of the following cases?

(a) ∀n > 0
[

P (n) → P (n + 5)
]

.

Solution Five, namely,P (0), P (1), P (2), P (3), andP (4).

(b) ∀n > 0
[

P (n) ∧ P (n + 2) → P (n + 3)
]

.

Solution Three, namely,P (0), P (1), andP (2).

(c) ∀n > 1
[

P (⌊n/2⌋) → P (n)
]

.

Solution One, i.e.,P (0) only.

(d) ∀n > 1
[

P (n − 1) ∧ P (n − 2) ∧ · · · ∧ P (⌊n/2⌋) → P (n)
]

.

Solution Again one (P (0)) only.

4 Prove that the setA of all finite subsets ofN is countable.

Solution [First solution] Fork ∈ N, denote byAk the set of all subsets ofN of size k. We have
A =

⋃

k∈N Ak. So it suffices to show that eachAk is countable. For the proof note that if we plan to
list the elements of finite subsets ofN of sizek in the increasingly sorted order, then we can identifyAk

with a subset ofNk which is a countable set.

[Second solution] Letp0 = 2, p1 = 3, p2 = 5, p3 = 7, . . . be the sequence of prime numbers. (We know
that there are infinitely many primes, and the set of primes, being a subset ofN, is countable.) Define a map
f : A → N asf({a1, a2, . . . , an}) = pa1

pa2
· · · pan

. By unique factorization of integers,f is injective.

[Note that the functionf in the second solution is not surjective. Indeed,Im(f) consists precisely of all
square-free positive integers. But this does not matter. Inorder to prove a setA to be countable, it suffices
to supply an injective mapA → N. If A is infinite, there anyway exists an injective mapN → A.]
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Additional exercises

5 Find the flaw in the following proof:

Theorem: All horses are of the same color.

Proof Let there ben horses. We proceed by induction onn. If n = 1, there is nothing to prove. So assume
thatn > 1 and that the theorem holds for any group ofn − 1 horses. From the givenn horses discard one,
say the first one. Then all the remainingn − 1 horses are of the same color by the induction hypothesis.
Now put the first horse back and discard another, say the last one. Then the firstn− 1 horses have the same
color again by the induction hypothesis. So all then horses must have the same color as the ones that were
not discarded either time. •

6 (a) Prove thatN is well-ordered assuming that the principle of weak mathematical induction holds.
(b) Prove that the principle of weak mathematical induction is equivalent to the principle of strong
mathematical induction. That is, if you assume any of the two, you can prove the other.

7 Let P (m,n) be a predicate involving two variablesm,n ∈ N. Suppose that the following are true.

(1) P (0, 0) is true.
(2) For allm,n ∈ N, the truth ofP (m,n) implies the truth ofP (m + 1, n) and also ofP (m,n + 1).

Prove thatP (m,n) is true for allm,n ∈ N.

8 Let Fn, n ∈ N, denote the sequence of Fibonacci numbers (i.e.,F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for
n > 2). Prove the following assertions by induction onn.

(a) Fn = φn−(1−φ)n

√
5

for all n ∈ N, whereφ = 1+
√

5
2 is the golden ratio.

(b)
(

1 1
1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

for all n > 1.

(c) Fn+1Fn−1 − F 2
n = (−1)n for all n > 1.

(d) Fm+1Fn + FmFn−1 = Fm+n for all m > 0, n > 1.
(e) gcd(Fn, Fn+1) = 1 for all n > 0.
(f) gcd(Fm, Fn) = Fgcd(m,n) for all m,n ∈ N, not both zero.

9 Let A be a finite set. Prove that the set of all functionsA → N is countable.

10 Prove that the set of all valid C programs is countable.

11 (a) Let Z[X] denote the set of polynomials in one indeterminateX and with integer coefficients. Prove
thatZ[X] is countable.
(b) Let k be a fixed positive integer. Prove that the setZ[X1,X2, . . . ,Xk] of multivariate polynomials with
integer coefficients is countable.
(c) Prove that the setZ[X1,X2, . . . ,Xk, . . .] of polynomials with countably infinite indeterminates and
with integer coefficients is countable.

12 A real or complex numberα is calledalgebraic if f(α) = 0 for some non-zero polynomialf(X) with
integer coefficients. LetA denote the set of all algebraic numbers. We haveA ⊆ C.

(a) Prove thatA is countable.
(b) Conclude that there are uncountably many transcendental numbers.
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