1 Let $A = \{1, 2, 3, 4, 5, 6\}$. Consider the relation

 $\rho = \{(1,1), (1,4), (1,5), (2,2), (2,6), (3,3), (4,1), (4,4), (4,5), (5,1), (5,4), (5,5), (6,2), (6,6)\}$

on A. Convince yourself that ρ is an equivalence relation on A. Find the equivalence classes of all the elements of A. Explicitly write the quotient set A/ρ .

Solution The equivalence classes are $[1] = [4] = [5] = \{1, 4, 5\}, [2] = [6] = \{2, 6\}$ and $[3] = \{3\}$. Therefore, $A/\rho = \{\{1, 4, 5\}, \{2, 6\}, \{3\}\}$.

- **2** Let A be the set of all non-empty finite subsets of \mathbb{Z} . Define a relation ρ on A as: $U \rho V$ if and only if $\min(U) = \min(V)$. Also define the relation σ on A as: $U \sigma V$ if and only if $\min(U) \leq \min(V)$.
 - (a) Prove that ρ is an equivalence relation on A.

Solution For all $U, V, W \in A$ we have:

- (1) $\min(U) = \min(U)$ [ρ is reflexive],
- (2) $\min(U) = \min(V)$ implies $\min(V) = \min(U)$ [ρ is symmetric], and
- (3) $\min(U) = \min(V)$ and $\min(V) = \min(W)$ imply $\min(U) = \min(W)$ [ρ is transitive].

(b) Identify good representatives from the equivalence classes of ρ .

Solution Consider the singleton sets $\{a\}$ for all $a \in \mathbb{Z}$.

(c) Define a bijection between the quotient set A/ρ and \mathbb{Z} .

Solution Take $f: A/\rho \to \mathbb{Z}$ as $[\{a\}]_{\rho} \mapsto a$. Argue that f is well-defined, injective and surjective.

(d) Prove or disprove: σ is a partial order on A.

Solution No, since the relation σ is not antisymmetric, i.e., $U \sigma V$ and $V \sigma U$ imply $\min(U) = \min(V)$, but we may have $U \neq V$ as in the case of $U = \{1, 2\}$ and $V = \{1, 3\}$, for example.

- **3** Let $f : A \to B$ be a function and σ an equivalence relation on B. Define a relation ρ on A as: $a \rho a'$ if and only if $f(a) \sigma f(a')$.
 - (a) Prove that ρ is an equivalence relation on A.

Solution Let $a, a', a'' \in A$.

[ρ is reflexive] Clearly, $f(a) \sigma f(a)$ (since σ is reflexive), i.e., $a \rho a$.

 $[\rho \text{ is symmetric}]$ Also $a \rho a'$ implies $f(a) \sigma f(a')$, i.e., $f(a') \sigma f(a)$ (since σ is symmetric), i.e., $a' \rho a$.

[ρ is transitive] Finally, $a \rho a'$ and $a' \rho a''$ imply $f(a) \sigma f(a')$ and $f(a') \sigma f(a'')$, i.e., $f(a) \sigma f(a'')$ (since σ is transitive), i.e., $a \rho a''$.

(b) Define a map $\overline{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that f is well-defined.

Solution Suppose $[a]_{\rho} = [a']_{\rho}$, i.e., $a \ \rho \ a'$, i.e., $f(a) \ \sigma \ f(a')$, i.e., $[f(a)]_{\sigma} = [f(a')]_{\sigma}$.

[The question of well-defined-ness arises here, because the value of the function is defined in terms of a representative of a class. Thus, we needed to show that irrespective of the choice of the representative, we get the same value for the function. The assignment $g : \mathbb{Z}_5 \to \mathbb{Z}_6$ taking $[a]_5 \mapsto [a]_6$ is not well-defined. For example, $[0]_5 = [5]_5$, but $[0]_6 \neq [5]_6$, i.e., we get different values when we use different representatives of the same class in the argument.]

(c) Prove that \overline{f} is injective.

Solution Suppose $\overline{f}([a]_{\rho}) = \overline{f}([a']_{\rho})$, i.e., $[f(a)]_{\sigma} = [f(a')]_{\sigma}$, i.e., $f(a) \sigma f(a')$, i.e., $a \rho a'$, i.e., $[a]_{\rho} = [a']_{\rho}$. So \overline{f} is injective.

(d) Prove or disprove: If f is a bijection, then so also is \overline{f} .

Solution This is true. By Part (c), \overline{f} is injective. On the other hand, take any $[b]_{\sigma} \in B/\sigma$. Since f is surjective, we have b = f(a) for some $a \in A$. But then $\overline{f}([a]_{\rho}) = [f(a)]_{\sigma} = [b]_{\sigma}$, i.e., \overline{f} is surjective too. [Note that we never used the fact that f is injective. Indeed, \overline{f} is bijective, whenever f is surjective.]

(e) Prove or disprove: If \overline{f} is a bijection, then so also is f.

Solution This is false. Take $A = \{a, b, c\}$, $B = \{1, 2\}$ and $\sigma = \{(1, 1), (2, 2)\}$. Also define f as f(a) = f(b) = 1 and f(c) = 2. Then $\rho = \{(a, a), (b, b), (a, b), (b, a), (c, c)\}$, i.e., $A/\rho = \{\{a, b\}, \{c\}\}$, $B/\sigma = \{\{1\}, \{2\}\}$, and $\overline{f}(\{a, b\}) = \{1\}$ and $\overline{f}(\{c\}) = \{2\}$. Therefore, \overline{f} is a bijection, whereas f is not.

Additional exercises

4 Let $A = \{1, 2, 3, 4, 5\}$. Define the relation ρ on A as follows.

 $\rho = \{(1,1), (1,2), (1,3), (1,5), (2,1), (2,4), (3,3), (4,5)\}.$

- (a) Determine the reflexive closure of ρ .
- (b) Determine the symmetric closure of ρ .
- (c) Determine the antisymmetric closure of ρ .
- (d) Determine the transitive closure of ρ .
- **5** Define the relation ρ on \mathbb{R} as: $a \rho b$ if and only if $a b \in \mathbb{Z}$.
 - (a) Prove that ρ is an equivalence relation on \mathbb{R} .
 - (b) Find good representatives for the equivalence classes of ρ .
 - (c) Provide an explicit bijection between \mathbb{R}/ρ and the real interval (3, 5].
- **6** Let m, n be positive integers. Prove that the assignment $f : \mathbb{Z}_m \to \mathbb{Z}_n$ taking $[a]_m \mapsto [a]_n$ is well-defined if and only if m is an integral multiple of n.
- 7 Let $f : A \to B$ be a function, ρ an equivalence relation on A, and σ an equivalence relation on B. Suppose further that if $a \rho a'$, then $f(a) \sigma f(a')$. Define the map $\overline{f} : A/\rho \to B/\sigma$ as $\overline{f}([a]_{\rho}) = [f(a)]_{\sigma}$. Argue that \overline{f} is well-defined. Prove or disprove the following statements.
 - (a) \bar{f} is injective.
 - (b) If f is a bijection, then so also is \overline{f} .
 - (c) If f is a bijection, then so also is f.
- 8 Let A be the set of all non-empty finite subsets of \mathbb{Z} . Define a relation τ on A as: $U \tau V$ if and only if either U = V or $\min(U) < \min(V)$. Prove or disprove: τ is a partial order on A.
- **9** Let A be the set of all functions $\mathbb{R} \to \mathbb{R}$. Define relations ρ, σ, τ on A as follows.
 - $f \rho g$ if and only if $f(a) \leq g(a)$ for all $a \in \mathbb{R}$,
 - $f \sigma g$ if and only if $f(0) \leq g(0)$,
 - $f \tau g$ if and only if f(0) = g(0).

Argue which of the relations ρ, σ, τ is/are equivalence relation(s). Argue which is/are partial order(s).

- 10 Prove the following assertions about a relation ρ on a set A.
 - (a) ρ is both symmetric and antisymmetric if and only if $\rho \subseteq \Delta_A$.
 - (b) ρ is transitive if and only if $\rho \circ \rho = \rho$.
 - (c) If ρ is non-empty, then ρ is an equivalence relation if and only if $\rho \circ \rho^{-1} = \rho$.
 - (d) ρ is a partial order if and only if ρ^{-1} is a partial order.