1 Let $f : A \to B$ be a function. Prove that f is a bijection if and only if there exists a function $g : B \to A$ with the properties that $g \circ f = id_A$ and $f \circ g = id_B$.

Solution [if] We first claim that f is injective. For the proof, take $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$. Application of g yields $a_1 = g(f(a_1)) = g(f(a_2)) = a_2$. We then show that f is surjective. Take any $b \in B$. Call a = g(b). But then b = f(g(b)) = f(a), i.e., $b \in \text{Im } f$.

[only if] If f is a bijection, $f^{-1}: B \to A$ is a total function which satisfies $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

2 Let $f : A \to B$ be a function, $S, S' \subseteq A$ and $T, T' \subseteq B$. Define

$$f(S) = \{f(a) \mid a \in S\} \subseteq B,$$

$$f^{-1}(T) = \{a \in A \mid f(a) \in T\} \subseteq A.$$

Notice that f^{-1} is not necessarily a function from B to A. It maps subsets of B to subsets of A (and so can be treated as a function $\mathcal{P}(B) \to \mathcal{P}(A)$). However, if f is a bijection, then f^{-1} is naturally a function from B to A. If f is injective, then f^{-1} is a partial function not defined for the elements in $B \setminus f(A)$.

(a) If $S \subseteq S'$, then prove that $f(S) \subseteq f(S')$.

Solution Let $b \in f(S)$, i.e., b = f(a) for some $a \in S$. Since $S \subseteq S'$, we have $a \in S'$ too and so $b = f(a) \in f(S')$.

(b) If $T \subseteq T'$, then prove that $f^{-1}(T) \subseteq f^{-1}(T')$.

Solution Let $a \in f^{-1}(T)$, i.e., $f(a) \in T$. Since $T \subseteq T'$, we have $f(a) \in T'$ too and so $a \in f^{-1}(T')$.

(c) Prove that $S \subseteq f^{-1}(f(S))$.

Solution Let $a \in S$. Then $f(a) \in f(S)$, i.e., $a \in f^{-1}(f(S))$.

(d) Give an example in which $S \subsetneq f^{-1}(f(S))$.

Solution Take $A = B = \mathbb{Z}$, $f(n) = n^2$ and $S = \{1, 2, 3\}$. Then $f(S) = \{1, 4, 9\}$ and $f^{-1}(f(S)) = \{1, -1, 2, -2, 3, -3\}$ is a proper superset of S.

(e) Prove that $f(f^{-1}(T)) \subseteq T$.

Solution Let $b \in f(f^{-1}(T))$, i.e., b = f(a) for some $a \in f^{-1}(T)$. But then $f(a) = b \in T$.

(f) Give an example in which $f(f^{-1}(T)) \subseteq T$.

Solution Take $A = B = \mathbb{N}$, $f(n) = n^2$ and $T = \{1, 2, 4\}$. We have $f^{-1}(T) = \{1, 2\}$ and so $f(f^{-1}(T)) = \{1, 4\}$ is a proper subset of T.

(g) Prove that $f(f^{-1}(f(S))) = f(S)$.

Solution By Parts (a) and (c), $f(S) \subseteq f(f^{-1}(f(S)))$. On the other hand, putting T = f(S) in Part (e) yields $f(f^{-1}(f(S))) \subseteq f(S)$.

(h) Prove that $f^{-1}(f(f^{-1}(T))) = f^{-1}(T)$.

Solution By Parts (b) and (e), $f^{-1}(f(f^{-1}(T))) \subseteq f^{-1}(T)$. On the other hand, putting $S = f^{-1}(T)$ in Part (c) yields $f^{-1}(T) \subseteq f^{-1}(f(f^{-1}(T)))$.

A general comment: In order to prove that two sets X and Y are equal, it suffices to show $X \subseteq Y$ and $Y \subseteq X$. That is, choose an arbitrary element $x \in X$ and show that $x \in Y$ too. Moreover, take an arbitrary element $y \in Y$ and show that $y \in X$ too.

Additional exercises

- **3** Let $f : A \to B$ and $q : B \to C$ be functions.
 - (a) Prove that if the function $g \circ f : A \to C$ is injective, then f is injective.
 - (b) Give an example in which $g \circ f$ is injective but, g is not injective.
 - (c) Prove that if $q \circ f$ is surjective, then q is surjective.
 - (d) Give an example in which $q \circ f$ is surjective, but f is not surjective.
- **4** Let $f : A \to B$ be a function. Prove that
 - (a) f is injective if and only if $f^{-1}(f(S)) = S$ for every $S \subseteq A$.
 - (b) f is surjective if and only if $f(f^{-1}(T)) = T$ for every $T \subseteq B$.

5 Let $f: A \to B$ be a function, $S, S' \subseteq A$ and $T, T' \subseteq B$. Prove that

- (a) $f(S \cup S') = f(S) \cup f(S')$.
- **(b)** $f(S \cap S') = f(S) \cap f(S').$
- (c) $f^{-1}(T \cup T') = f^{-1}(T) \cup f^{-1}(T')$.
- (d) $f^{-1}(T \cap T') = f^{-1}(T) \cap f^{-1}(T').$

(e) $f^{-1}(\overline{T}) = \overline{f^{-1}(T)}$, where the complements in the left and right sides are in B and A, respectively.

(f) If f is surjective, then $f(\overline{S}) \supseteq \overline{f(S)}$, where the complements in the left and right sides are in A and B, respectively.

6 A function $f: \mathbb{Z} \to \mathbb{Z}$ is called *nilpotent* if for some $n \in \mathbb{N}$ we have $f^n(a) = 0$ for all $a \in \mathbb{Z}$.

- (a) Give an example of a non-constant nilpotent function.
- (b) Prove or disprove: The function f(a) = ||a|/2| is nilpotent.
- 7 Let $f: A \to B$ be a function. Define a function $\mathcal{F}: \mathcal{P}(A) \to \mathcal{P}(B)$ as $\mathcal{F}(S) = f(S)$ for all $S \subseteq A$. Prove that
 - (a) \mathcal{F} is injective if and only if f is injective.
 - (b) \mathcal{F} is surjective if and only if f is surjective.
 - (c) \mathcal{F} is bijective if and only if f is bijective.
- **8** Let $f : A \to A$ be a function.
 - (a) Suppose that A is a finite set. Prove that f is injective if and only if f is surjective.
 - (b) Give an example of a function $f: A \to A$ which is injective but not surjective.
 - (c) Give an example of a function $f: A \to A$ which is surjective but not injective.
- **9** A function $f: \mathbb{R} \to \mathbb{R}$ is called *monotonic increasing* if $f(a) \leq f(b)$ whenever $a \leq b$. It is called *strictly* monotonic increasing if f(a) < f(b) whenever a < b. One can define monotonic decreasing and strictly monotonic decreasing functions in analogous ways.
 - (a) Prove that a strictly monotonic increasing function is injective.
 - (b) Demonstrate than an injective function $\mathbb{R} \to \mathbb{R}$ need not be strictly increasing or strictly decreasing.
 - (c) Prove that a continuous injective function $\mathbb{R} \to \mathbb{R}$ is either strictly increasing or strictly decreasing.

10 Let $x, y \in \mathbb{R}$, || the floor function and [] the ceiling function. Prove the following assertions.

- (a) $x 1 < |x| \le x \le [x] < x + 1$.
- (b) $|-x| = -\lceil x \rceil$ and $\lceil -x \rceil = |x|$.
- (c) $\lfloor \lfloor \frac{x}{m} \rfloor / n \rfloor = \lfloor \frac{x}{mn} \rfloor$ and $\lceil \lceil \frac{x}{m} \rceil / n \rceil = \lceil \frac{x}{mn} \rceil$, where m, n are positive integers. (d) $\lfloor mx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{m} \rfloor + \lfloor x + \frac{2}{m} \rfloor + \dots + \lfloor x + \frac{m-1}{m} \rfloor$, where m is a positive integer.