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Chapter 4 : Sizes of sets

In this chapter, we deal with the concept of how large a set is.The biggest implication of this study in
Computer Science is the fact that computers cannot solve allproblems. This is one the most fundamental
realizations underlying the theory of computation.

4.1 The notion of size

Thesizeor cardinality of a set is the number of elements in it. The size of a setA is denoted by|A|. The
notation|A| < ∞ implies thatA is a finite set. A finite set withn elements can be listed as{a1, a2, . . . , an},
whereai is thei-th element ofA for i = 1, 2, . . . , n.

The simplest example of an infinite set is the setN = {1, 2, 3, . . .} of natural numbers. Consider the set
Nn = {1, 2, . . . , n}. For everyn ∈ N the setNn is finite. However, their unionN =

⋃

n∈N Nn is not a finite
set. Nonetheless, we can count the elements ofN as1, 2, 3, . . . , n, . . . . This counting never stops, but every
n ∈ N, however large, is eventually covered in the counting process.

Two sets are calledequinumerous, if they have the same size. For finite sets, this concept is easy to visualize.
We run into trouble when we work with infinite sets. Clearly, no infinite set can be equinumerous with a
finite set. What is more important is that two infinite sets need not be equinumerous. We will soon see that
the setZ of all integers (positive, negative and zero) and the setQ of rational numbers are equinumerous
with N. That is surprising, sinceN is a strict subset ofZ and can be easily visualized to be embedded inside
Q (identify the natural numbern with the rational numbern/1). SinceZ is equinumerous withN, we can
also count or enumerate the elements ofZ, so that for everyn ∈ N we can identify an integeran as then-th
integer. For example, we may order the elements ofZ as0, 1,−1, 2,−2, 3,−3, . . . , n,−n, . . . . Thus0 is
thefirst integer in the counting process,1 is thesecondinteger,−1 thethird integer,2 thefourth integer, and
so on. It is clear that everym ∈ Z, positive, negative, or zero, is eventually covered in the counting process.

The setR of all real numbers is not equinumerous withN. In fact,R contains more elements thanN (or Z or
Q). This implies that if we start counting real numbers as above and allow the counting process to continue
ad inifinitum, we cannot exhaust the list of all real numbers. In other words, whatever way we count real
numbers, we are sure to miss out some real number(s) in the counting process.

It is now time to make the concept of size mathematically concrete. We use the theory of functions to that
effect. Since we will be dealing mostly with infinite sets, itis imperative that the reader is already quite
comfortable with the concept of injective, surjective and bijective functions among infinite sets.

4.2 Comparing the sizes of two sets

Let A,B be two sets. We say that

|A| 6 |B|

if there exists an injective mapf : A → B. This notion is intuitively clear, since for every elementa ∈ A we
can associate an elementb = f(a) of B in such a fashion that two different elements ofA are not associated
with the same element ofB. The mapf essentially produces an embedding ofA in B. SoB cannot be of
size smaller than the size ofA.

4.1 Example (1) LetA ⊆ B. The canonical inclusion mapι : A → B takinga 7→ a is an injection, and
so |A| 6 |B|. For example,N ⊆ Z and so|N| 6 |Z|. Also letZodd (resp.Zeven) denote the set of all odd
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(resp. even) integers. We have|Zodd| 6 |Z| and|Zeven| 6 |Z|. Similarly, |Nodd| 6 |N| and|Neven| 6 |N|
for natural numbers.

(2) The canonical inclusion mapZ → Q that takesa 7→ a/1 is an injection, and so|Z| 6 |Q|. Also Z is
canonically embedded inR and so|Z| 6 |R|. Likewise,|Q| 6 |R|.

(3) What is initially confusing about infinite sets is that even whenA ⊆ B, there may exist an injective
mapB → A implying that |B| 6 |A|. As an example, consider the injectionf : Z → N defined as
f(0) = 1, f(1) = 2, f(−1) = 3, f(2) = 4, f(−2) = 5, . . . , f(n) = 2n, f(−n) = 2n + 1, . . . . This
implies |Z| 6 |N|.

Two setsA,B are calledequinumerous, denoted|A| = |B|, if

|A| 6 |B| and |B| 6 |A|,

or equivalently if there exist an injective mapf : A → B and an injective mapg : B → A.

For example, we have proved that|N| 6 |Z| and|Z| 6 |N|. It follows that:

|Z| = |N| ,

i.e.,Z is of the same size asN. The inclusion functionι : N → Z is injective but not surjective, whereas the
function of Part (3) of Example 4.1 is a bijection. We may indeed propose an injective but non-surjective
functiong : Z → N asg(0) = 1, g(1) = 2, g(−1) = 4, g(2) = 5, g(−2) = 7, . . . , g(n) = 3n− 1, g(−n) =
3n + 1, . . . , the image of which does not include the positive multiples of 3.

It is natural to expect two setsA,B to be equinumerous if there exists a bijectionh : A → B between
them. Clearly, the existence of such a function implies|A| 6 |B| (h is injective) and|B| 6 |A| (h−1 is
injective). The converse of this is not immediately clear, i.e., the existence of injective functionsf : A → B
andg : B → A does not immediately imply the existence of a bijectionh : A → B. This is, however, true,
as is proved now.

4.2 Theorem [Cantor-Schr̈oder-Bernstein theorem] Two setsA,B are equinumerous if and only if there
exists a bijectionh : A → B between them.

Proof [If] Obvious.

[Only if] Let f : A → B andg : B → A be injections. We need to construct a bijectionh : A → B. To
that effect we construct a subsetS of A and defineh as

h(x) =

{

f(x) if x ∈ S,
g−1(x) if x /∈ S.

The construction of the subsetS is quite tricky. Ifg is surjective,g−1 is already a bijectionA → B, and we
takeS = ∅. So we assume thatg is not surjective.

The functiong, surjective or not, yields a bijectiong−1 : g(B) → B. The elements ofA \ g(B) lie
outside the domain ofg−1. Soh needs to usef in order to map elements ofA \ g(B) and we start with
S0 = A \ g(B).

Now suppose that there is an elementx ∈ S0 for which f(x) = g−1(y) for some elementy ∈ g(B) (i.e.,
y /∈ S0). We have already definedh(x) = f(x) sincex ∈ S0. Sinceh is going to be injective, we cannot
defineh(y) = g−1(y), i.e., we must defineh(y) = f(y). Notice thaty = g(g−1(y)) = g(f(x)) = (g◦f)(x)
with x ∈ S0. It follows thath needs to usef for mapping elements ofS1 = (g ◦ f)(S0).
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Now takex ∈ S1. There existsy ∈ A, y /∈ S0 ∪ S1, such thatf(x) = g−1(y). Since we have already
takenh(x) = f(x), we must defineh(y) = f(y), i.e., we must usef in order to defineh on elements of
S2 = (g ◦ f)(S1).

Proceeding in this way we defineSk inductively as:

S0 = A \ g(B) = (g ◦ f)0(A \ g(B)),

Sk = (g ◦ f)(Sk−1) = (g ◦ f)k(A \ g(B)) for k > 1.

Finally, we take:

S =
⋃

k>0

Sk =
⋃

k>0

(g ◦ f)k(A \ g(B)).

I now formally establish that this construction works, i.e., h defined as above with respect to thisS is indeed
a bijection. First notice thatS ⊇ S0 = A \ g(B), so thatA \ S ⊆ g(B), that is,h(x) is defined for every
x /∈ S. It is also defined for everyx ∈ S, i.e.,h is well-defined.

Claim: h is injective.

Suppose thath(x) = h(y) for somex, y ∈ A. If both x, y ∈ S, thenx = y by the injectivity off . If both
x, y ∈ A\S, then the injectivity ofg−1 impliesx = y. So assume that one ofx, y is in S, the other inA\S.
Supposex ∈ S andy /∈ S. By definition ofS we havex ∈ Sk for somek > 0. Also sincey /∈ S, we have
y ∈ g(B). Therefore,y = g(g−1(y)) = g(h(y)) = g(h(x)) = g(f(x)) = (g ◦ f)(x), i.e.,y ∈ Sk+1, i.e.,
y ∈ S, a contradiction. So it is not possible to havex ∈ S andy /∈ S.

Claim: h is surjective.

Take an arbitraryb ∈ B. We need to produce ana ∈ A for which h(a) = b. Considerx = g(b) ∈ A.
If x /∈ S, thenh(x) = g−1(x) = g−1(g(b)) = b, i.e., we takea = x. So suppose thatx ∈ S. By
construction ofS, we havex ∈ Sk for somek > 0, i.e., x = (g ◦ f)k(y) for somey ∈ S0. Since
x = g(b) ∈ g(B), we cannot havek = 0, i.e., k > 1. Takea = (g ◦ f)k−1(y) ∈ Sk−1 ⊆ S. But then
h(a) = f(a) = g−1(g(f(a)) = g−1((g ◦ f)((g ◦ f)k−1(y))) = g−1((g ◦ f)k(y)) = g−1(x) = b. ◭

4.3 Example As an illustration of the Cantor-Schröder-Bernstein theorem, takeA = N andB = Neven

(the set of even natural numbers). Also takef : A → B asf(a) = 4a andg : B → A asg(b) = b. Bothf
andg are injective, but neither of them is bijective. We haveg(B) = {2, 4, 6, 8, 10, . . . , 2n, . . .}, and so

S0 = {1, 3, 5, 7, . . . , 2n − 1, . . .} = {2n − 1 | n ∈ N},

S1 = {22(2n − 1) | n ∈ N},

S2 = {24(2n − 1) | n ∈ N},

· · ·

Sk = {22k(2n − 1) | n ∈ N}.

Therefore,S comprises positive integers in which the multiplicities of2 are even. The values ofh(a) are
listed below for some small values ofa.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·
h(a) 4 2 12 16 20 6 28 8 36 10 44 48 52 14 60 64 68 18 · · ·

This bijection is different from the standard bijectionN → Neven that mapsn 7→ 2n.
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4.3 Countable sets

Not all infinite sets have the same size. Every infinite set does not have bijective correspondence with the
setN of natural numbers. IndeedN (or Z) happens to be the smallest infinite set, i.e., any infinite set must
be at least as big asN is. For a proof, take any infinite setA and define a mapf : N → A as follows.
Pick an elementa1 from A and setf(1) = a1. Then pick another elementa2 from A and setf(2) = a2.
Assume that for somen ∈ N pairwise distinct elementsa1, a2, . . . , an have been chosen fromA. Since
A is infinite, there remains an element ofA not chosen so far. Pick any such elementan+1 from A and
set f(n + 1) = an+1. By induction, we then have a well-defined injective function f : N → A, and
consequently|N| 6 |A|.

It turns out that for some infinite setsA the functionf constructed as above cannot be surjective irrespective
of how we choose the elementsa1, a2, . . . , an, . . . . This happens becauseA has a size strictly bigger than
that ofN, and so there cannot exist any surjective function fromN ontoA.

Elements of a finitesetA can be counted, i.e., we can build an injective functionf : Nn → A as above,
wheren = |A|. This process stops after all of then elements are picked fromA. So finite sets are called
countable.

An infinite setA for which a bijectionf : N → A can be established is also calledcountable. Sincef is
bijective (in particular surjective), every elementa ∈ A is the image of somen ∈ N underf . This means
thata has been picked during then-th step of the counting process. The counting process here is infinite,
but the guarantee that every element ofA is considered in finite time prompts us to treatA as countable.

In order to prove an infinite countable setA to be so, one may produce a bijectionf : N → A. In other
words, one may supply a way of numbering elements ofA so that every element ofA is covered in the
process and no element is counted more than once in the process. SinceA is infinite, we anyway have
|N| 6 |A|. It then suffices to show that|A| 6 |N| (See the Cantor-Schröder-Bernstein theorem). That is, it
suffices to produce an injective mapA → N. To sum up, an infinite setA is countable if and only if there
exists an injective mapf : A → N. In this assertion,N can be replaced by any set that is already known to
be countable.

I will now furnish some countability proofs.

4.4 Proposition Any subset of a countable set is again countable.

Proof Let A be a countable set andB ⊆ A. If B is finite, it is countable. Otherwise, consider the inclusion
mapB → A, b 7→ b, which is injective. ◭

This result implies that the setsZodd, Zeven, Nodd andNeven are countable.

4.5 Proposition The union of two countable sets is again countable. More generally, the union of any
finite number of countable sets is again countable.

Proof Let A,B be two countable sets. If one or both of the sets is/are finite,thenA ∪ B is evidently
countable. So assume that bothA and B are infinite. Leta1, a2, . . . , an, . . . and b1, b2, . . . , bn, . . . be
exhaustive listings of the elements ofA and B respectively. I need to produce an exhaustive listing of
the elements ofA ∪ B. If we first list the elements ofA, followed by the elements ofB, we encounter
a trouble. Here the listing of the elements ofA does not terminate after finitely many steps, and so the
elements ofB do not receive a chance of getting listed. A proper listing ofthe elements ofA ∪ B can be
a1, b1, a2, b2, a3, b3, . . . , an, bn, . . . . There is a small catch here: the setsA andB need not be disjoint. In
case of a repetition, the second occurrence of an element is skipped from the list.

For proving the generalized assertion, letk countable setsA1, . . . , Ak be provided. We need to show that
A =

⋃k
i=1 Ai is countable. We proceed by induction onk. The result trivially holds fork = 0, 1. So
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suppose that the unionB of k− 1 setsA1, . . . , Ak−1 is countable. But thenA = B∪Ak is the union of two
countable sets and is countable too. ◭

4.6 Proposition The union of a countable number of countable sets is again countable.

Proof Let An, n ∈ N, be a family of countable sets. We plan to show thatA =
⋃

n∈N An is countable.
Once again I need to supply a listing of the elements ofA in which every element appears after finitely
many steps. Letai,j be thej-th element in a given listing ofAi (eachAi is countable). The following figure
depicts a way of combining the lists.

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

a

a

a

a

a
5,2

1,2

2,2

3,2

4,2

a

a

a

a

a
5,3

1,3

2,3

3,3

4,3

a

a

a

a

a
5,4

1,4

2,4

3,4

4,4

a

a

a

a

a
5,5

1,5

2,5

3,5

4,5

a
1,1

a

a

a

a

2,1

3,1

4,1

5,1

We first lista1,1. We then lista1,2, a2,1, thena1,3, a2,2, a3,1, and so on. More concretely, we listai,j in the
increasing order ofi + j. For a fixed value ofi + j, we list the elementsai,j in the increasing order ofi.
Of course, we exclude all repetitions in the list, i.e., if some elementai,j has already been encountered as
ai′,j′ , then we do not insertai,j again in the list. Also notice that some of the setsAn may be finite and so
have only finite listings. In that case the elementsan,i are not defined after all elements ofAn are exhausted.
During the above diagonal-wise listing, we skip all empty locations where no defined elements reside.◭

4.7 Proposition The Cartesian productA × B of two countable setsA,B is countable. More generally,
the Cartesian product of a finite number of countable sets is again countable.

Proof For eacha ∈ A the set

Ba = {(a, b) | b ∈ B}

is in bijective correspondence withB and so is countable. Therefore,A × B =
⋃

a∈A Ba is the union of
countably many countable sets and is countable.

The general statement can be proved easily by induction on the number of sets in the given collection.◭

But that is all. The Cartesian product of countably many countable sets is, in general, not countable.

4.8 Proposition The setQ of rational numbers is countable.

Proof Every element ofQ has a normalized representation of the forma/b with a ∈ Z, b ∈ N, and
gcd(a, b) = 1. Thus each rational number is identified by a pair of integers, i.e., we can viewQ as a subset
of Z × N. The result then follows from Propositions 4.4 and 4.7. ◭
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Maths-savvy students may note thatthecountable infinity is denoted by the symbolℵ0 pronounced “aleph-
not”. We have essentially proved the following assertions aboutℵ0.

ℵ0 + ℵ0 = ℵ0 .

kℵ0 = ℵ0 for everyk ∈ N.

ℵ0 × ℵ0 = ℵ0 .

ℵk
0 = ℵ0 for everyk ∈ N.

4.4 Proving uncountability using diagonalization

A set A is calleduncountableif it is not countable, i.e., ifA cannot have any bijection withN. Proving
that no bijection can exist betweenA andN is not as easy task. A technique calleddiagonalizationoften
helps us here. We start with the assumption thatA does possess a bijective correspondence withN. Then
using diagonalization we arrive at a contradiction implying that our assumption about the countability ofA
is false. I now present some proofs based on diagonalization.

4.9 Proposition The setR of real numbers is uncountable.

Proof I will prove that the interval

[0, 1) = {x ∈ R | 0 6 x < 1}

is uncountable. IfR were countable, the interval[0, 1) would be countable too (Proposition 4.4). So the
following proof suffices.

Notice first that every real number has a decimal expansion. For real numbers in the interval[0, 1), the
integer part is0 and it suffices to concentrate only on the expansion following the decimal point. We consider
infinite decimal expansions only. For example,1/3 = 0.3333333333 . . . , π − 3 = 0.1415926535 . . . , etc.
If the decimal expansion of some real number is terminating,we append an infinite number of0’s in the
expansion. For example,3/8 = 0.3750000000 . . . . Some real numbers do have two infinite expansions,
like 3/8 = 0.3750000000 . . . = 0.3749999999 . . . . In such a case we pick one of these two expansions
arbitrarily.

Assume that[0, 1) is countable. Then there exists a bijectionf : N → [0, 1). We write down the decimal
expansion of eachf(n) (resolving ambiguities arbitrarily, if necessary) as follows. Here eachan,i is a
decimal digit (an integer between0 and9).

f(1) = 0 . a1,1 a1,2 a1,3 a1,4 a1,5 . . . a1,n . . .

f(2) = 0 . a2,1 a2,2 a2,3 a2,4 a2,5 . . . a2,n . . .

f(3) = 0 . a3,1 a3,2 a3,3 a3,4 a3,5 . . . a3,n . . .

f(4) = 0 . a4,1 a4,2 a4,3 a4,4 a4,5 . . . a4,n . . .

f(5) = 0 . a5,1 a5,2 a5,3 a5,4 a5,5 . . . a5,n . . .

· · ·
f(n) = 0 . an,1 an,2 an,3 an,4 an,5 . . . an,n . . .

· · ·
b = 0 . b1 b2 b3 b4 b5 . . . bn . . .

We now look at the diagonal digitsa1,1, a2,2, . . . , an,n, . . . in order to construct the decimal expansion
0.b1b2 . . . bn . . . of a real numberb. We take then-th digit bn of b as:

bn =

{

2 if an,n = 1,
1 otherwise.
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Clearly,b ∈ [0, 1). Sincef is surjective, we must haveb = f(n) for somen ∈ N. But by the construction
of b, then-th digits ofb andf(n) are different. Moreover, the decimal expansion ofb consists only of1’s
and2’s, and sob has a unique expansion. Therefore, we cannot haveb = f(n), a contradiction. ◭

The above example illustrates the construction of an element b of an uncountable setA, which is forced
to differ from eachf(n) at at least one point. So we cannot haveb = f(n) for any n ∈ N, i.e., no map
f : N → A can be surjective. Usually, the point at whichb differs from f(n) lies on the diagonal in a
pictorial representation. This is why the name diagonalization is used.

A slight modification of the above proof implies the following result. HereΣ is any finite set of size at least
2. For example,Σ may be the binary alphabet{0, 1}, or the decimal alphabet{0, 1, 2, . . . , 9} or the Roman
alphabet{a, b, c, . . . , z}.

4.10 Proposition The set of infinite sequences overΣ is uncountable. ◭

Thus the Cartesian product of countably many finite sets neednot be countable. In fact,

kℵ0 > ℵ0 for any integerk > 2 .

Now I will prove another important result using diagonalization.

4.11 Proposition For any setA, there cannot exist a bijection betweenA and its power setP(A). In
particular, the number of subsets of any countably infinite set is uncountable.

Proof Take any setA, and assume thatf : A → P(A) is a bijection. Construct a subsetB of A as follows:

B = {a ∈ A | a /∈ f(a)}.

Sincef is surjective, there existsa ∈ A such thatB = f(a). If a ∈ f(a), thena /∈ B (This is howB
is constructed). ButB = f(a), and soa /∈ f(a). On the other hand, ifa /∈ f(a), thena ∈ B (by the
construction ofB), i.e.,a ∈ f(a) (sinceB = f(a)). Thus we have proved thata ∈ f(a) ⇐⇒ a /∈ f(a).
This is absurd. ◭

In the above proof, the setB is forced to differ from eachf(a) with respect to the inclusion ofa. If a
belongs tof(a), we do not includea in B. On the other hand, ifa does not belong tof(a), we includea in
B. In this wayB is forced to lie outside the range off . If you still wonder what is diagonal in the above
argument, here is a visualization for a special case. TakeA = N. For B ⊆ A, define the characteristic
functionCB : A → {0, 1} as:

CB(a) =

{

1 if a ∈ B,
0 if a /∈ B.

Now I make a two-dimensional listing ofCf(n)(i), wheren runs over the rows, andi over the columns.

Cf(n)(i)

n f(n) i = 1 i = 2 i = 3 i = 4 i = 5 · · ·
1 ∅ 0 0 0 0 0 · · ·
2 {2, 4, 6, 8} 0 1 0 1 0 · · ·
3 {2, 3, 5, 7, 11, . . .} 0 1 1 0 1 · · ·
4 {1, 3, 5, 7, 9, . . .} 1 0 1 0 1 · · ·
5 {1, 2, 3, 5, 8, 13, . . .} 1 1 1 0 1 · · ·
· · · · · ·

B {1, 4, . . .} 1 0 0 1 0 · · ·
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HereB is constructed to force thatCB(n) is different from the diagonal valueCf(n)(n).

The setR of real numbers is uncountable. Its size is denoted byc, asR is often referred to as thecontinuum.
We have proved that

c > ℵ0 .

There exist infinite sets whose sizes are bigger thanc. For example, the power set ofR is of size strictly
bigger thanc.

Does there exist a set of size strictly betweenℵ0 andc? The answer is not known. Georg Cantor conjectured
that no such set exists. This famous unproven conjecture is referred to as thecontinuum hypothesis.

4.5 Application: Computers cannot solve all problems

Computer theoreticians have devised a way to characterize computational problems mathematically. This
characterization requires the introduction of a series of definitions.

An alphabetis a finite set. Members of an alphabet are calledsymbols. We use upper-case Greek letters like
Σ,Γ for naming alphabets. An alphabet is typically used to represent languages. For example, the Roman
alphabet (‘a’ through ‘z’, space, and punctuation marks) isused to express the language of English in written
form. Similarly, the alphabet consisting of digits (0 through 9), the decimal point, and the signs (+ and−)
can be used to represent the language of real numbers. If we want to write complex numbers, we use an
additional symboli (some people usej or ι instead) in the representation alphabet. In all these examples,
we describe infinite sets using finitely many symbols.

A string over an alphabetΣ is a finitesequence of symbols fromΣ. For example, ‘abracadabra’, ‘zyzzyva’,
‘Madam, I’m Adam!’ are English strings,+0.1123581321, −435 are numeric strings. A string is finite in
length by definition, and is different from a set in that the order of the symbols in the sequence is important,
and repetitions of symbols are allowed in the sequence. For example, the numeric strings1231, +1231,
01231 are distinct from one another (although they refer to the same value). Moreover,1231 is different
from 1123 and also from123.

The set of all strings over an alphabetΣ is denoted byΣ∗. An important fact aboutΣ∗ is the following:

4.12 Proposition Σ∗ is countably infinite.

Proof The lengthof a string is the number of symbols in the string. For example, the length of1231 is 4,
and the length of+01231 is 6. We can writeΣ∗ as the union ofΣl for l = 0, 1, 2, . . . , whereΣl is the set of
all strings overΣ having lengthl. EachΣl has finite size (namely|Σ|l), and so is countable. ThusΣ∗ is the
union of countably many countable sets. ◭

The above proposition remains valid even if we allowΣ to be countably infinite.

A languageover Σ is a subset ofΣ∗. For example, the language of English consists precisely ofthose
strings (over the Roman alphabet) that has an interpretation in English. Thus, ‘Madam, I’m Adam!’ is in
the English language, whereas ‘I Adam, Madam am!’ is not in the English language. Similarly,+0.12.345
is not a numeric string (i.e., not in the language of real numbers).

The set of all languages overΣ is precisely the power setP(Σ∗) of Σ∗.

4.13 Proposition P(Σ∗) is uncountable.

Proof No set can have a bijective correspondence with its power set. ◭
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Now suppose that we have an alphabetΣ and we want to represent a language overΣ. The representation
is done by afinite description called agrammarfor the language. For example, the English language is
described by the English grammar. The language of real numbers is described by the rule: “optionally a
sign, followed by zero or more (but finitely many) digits, followed optionally by the decimal point and
another finite sequence of zero or more decimal digits”. Of course, you may disallow exceptions like ‘. ’,
‘+ . ’, and ‘− . ’.

Examples of languages with better computational flavor include the language of primes (those decimal
strings representing positive primes), the language of valid C programs (the C language), and so on. The
language of primes have a mathematical description (something like (a | p) ⇒ (a = 1) ∨ (a = p)). The C
language is specified by a grammar that compilers should follow while compiling a program.

In all these examples, a language is specified by a grammar which itself is a string over some alphabet
Γ. Notice that the representation alphabetΓ may be different from the alphabetΣ of the language being
described. That is not a big issue as long as bothΣ and Γ remain finite (or countable). What is more
important here is that any grammar has to be finite. For example, your C compiler cannot follow an infinite
grammar, for if so, some programs would require infinite timeduring compilation.

A (computational)problemis defined as follows: Given the finite representation of a languageL overΣ and
a stringα overΣ, determine whetherα ∈ L. Each language is, therefore, a problem, and conversely!

If L itself is finite, we can list the strings inL one by one. The list fits in a finite amount of space, and
is a grammar forL. One can exhaustively search forα in the list. On the other hand, ifL is infinite, an
exhaustive listing of the elements ofL is not finite, and a grammar forL has to resort to other means. But
then some procedure must also be specified in order to identify whetherα can be generated using the rules
in this grammar. This procedure is precisely what we mean bycomputation.

Suppose that we are interested in languages over the alphabet Σ. Suppose also that we use the representation
alphabetΓ for writing grammars. (Since symbols in any alphabet can be encoded in binary, you can take
Σ = Γ = {0, 1}.) The set of languages overΣ is P(Σ∗) which is proved earlier to be uncountable. On
the other hand,Γ∗ is countable, so we can write grammars for only countably many languages. Ability
to express a language by a grammar does not immediately lead to an algorithm to solve the corresponding
problem. That is, the set of problems that have algorithms (that is, that can be solved by computers) is a
(potentially strict) subset of the set of languages that canbe represented by grammars, and so is countable
too. It turns out that we can solve only countably many problems using computers, whereas the number of
problems is uncountable. It then follows that computers cannot solve uncountably many problems (in fact,
more problems than they can solve).

This dark reality follows from simple counting (well, countability) arguments. Locating problems that
cannot be solved by computers (and proving them to be unsolvable) is, however, not an easy task. We often
use diagonalization proofs to this effect. All these are topics to be discussed in a course on formal languages
and automata theory (or in an advanced sequel to that course).

Exercises

4.1 Prove that the setsSk, k > 0, used in the proof of the Cantor-Schröder-Bernstein theorem are pairwise disjoint.

4.2 Determine the setS and the corresponding bijection for the mapsf : N → Z andg : Z → N, wheref is the inclusion
map, andg is defined asg(0) = 1, g(1) = 2, g(−1) = 4, g(2) = 5, g(−2) = 7, . . . , g(n) = 3n − 1, g(−n) =
3n + 1, . . . .

4.3 Determine the setS and the corresponding bijection for the mapsf : Neven → N andg : N → Neven defined by
f(a) = a andg(b) = 4b. Argue that this bijection is the inverse of the mapN → Neven constructed in Example 4.3.

4.4 Prove that a set is countable if and only if it has bijective correspondence with a subset ofN.
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4.5 Let A be a countable set. Prove that:

(a) The set of all finite subsets ofA is countable.

(b) The set of all infinite subsets ofA is uncountable.

4.6 (a) Let Z[X ] denote the set of polynomials in one indeterminateX and with integer coefficients. Prove thatZ[X ] is
countable.

(b) Let k be a fixed positive integer. Prove that the setZ[X1, X2, . . . , Xk] of multivariate polynomials with integer
coefficients is countable.

(c) Prove that the setZ[X1, X2, . . . , Xk, . . .] of polynomials with countably infinite indeterminates and with integer
coefficients is countable.

4.7 Prove that the setZ[[X ]] of power series with integer coefficients is uncountable.

4.8 A real or complex numberα is calledalgebraic if f(α) = 0 for some non-zero polynomialf(X) with integer
coefficients. LetA denote the set of all algebraic numbers. (We haveA ⊆ C.)

(a) Prove thatA is countable.

(b) Conclude that there are uncountably many transcendental numbers.

4.9 Let A be a countably infinite set andB a finite set. Prove that:

(a) The set of all functionsA → B is uncountable.

(b) The set of all functionsB → A is countable.

4.10 (a) Let a, b be real numbers witha < b. Supply an explicit bijection between the intervals[0, 1) and[a, b).

(b) Suggest an explicit bijection between the interval[0, 1) and the entire real lineR.

4.11 Let A, B be sets, whereA is equinumerous withR andB is equinumerous withN. Prove thatA∪B is equinumerous
with R. (This meansc + ℵ0 = c.)

4.12 Let A be a countable set. Prove that the set of all functionsA → {0, 1} is equinumerous withR (i.e., 2ℵ0 = c).
Conclude that the power setP(A) is equinumerous withR.

4.13 Prove that the set of all permutations of a countable set is not countable. (One can showℵ0! = c.)

4.14 Prove that the union of two sets each equinumerous withR is again equinumerous withR (i.e.,c + c = c).

4.15 Prove that the union of countably many sets each equinumerous withR is again equinumerous withR (i.e.,ℵ0×c = c).

4.16 Prove that the real interval[0, 1) is equinumerous with the two-dimensional square[0, 1) × [0, 1) (i.e.,c × c = c).

4.17 (a) Prove that we can represent every integer in finite space using only finitely many symbols (digits and signs).

(b) Prove that we can represent every rational number in finite space using only finitely many symbols.

(c) Prove that the set of real numbers that have finite decimal expansions is countable. (This set is a subset ofQ.)

(d) Prove that every rational number has terminating or repeating decimal expansion. Enclose the repeating part in
a decimal expansion by a pair of curly braces. For example,1/3 = 0.{3}, 1.2{142857} = 1 + (2/10) + (1/70) =
85/70 = 17/14. Conclude that the inclusion of the extra symbols{ and} lets us represent each rational number in
finite space only.

(e) Prove that the set of finite arithmetic expressions involving rational numbers represented as in the previous part,
arithmetic operators (+, −, ×, and/), and parentheses is countable.

(f) Argue that allowing countably many symbols representing square, cube,. . . roots in arithmetic expressions leaves
the set of finitely representable numbers countable.

(g) Now allow well-known transcendental numbers likeπ, e in arithmetic expressions. Prove that the set of finitely
representable numbers still remains countable.
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