CS21001 Discrete Structures, Autumn 2007

Mid-semester examination

Total marks: 60	September 2007	Duration: 2 hours
-----------------	----------------	--------------------------

[Answer all questions. Be brief and precise.]

1 Consider the following recursive C function.

```
unsigned int f ( unsigned int n )
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

- (a) What does f(19) return?
- (b) What does f(5) return?
- (c) What can you conclude about f as a function $\mathbb{N} \to \mathbb{N}$?
- 2 Let \mathbb{C} denote the set of complex numbers and $\mathbb{Z}[i]$ the subset $\{a + ib \mid a, b \in \mathbb{Z}\}$ of \mathbb{C} . Elements of $\mathbb{Z}[i]$ are called *Gaussian integers*. For $z = x + iy \in \mathbb{C}$, we denote by |z| the magnitude of z and by $\arg z$ the argument of z. Thus, $z = \sqrt{x^2 + y^2}$ and $\arg z = \tan^{-1}\left(\frac{y}{x}\right)$. We take $\arg z$ in the interval $[0, 2\pi)$.

(5)

(5)

(5)

(5)

(5)

- Define a relation ρ on \mathbb{C} as follows. Take $z_1, z_2 \in \mathbb{C}$. We say that $z_1 \rho z_2$ if and only if
 - either (i) $|z_1| < |z_2|$, or (ii) $|z_1| = |z_2|$ and $\arg z_1 \le \arg z_2$.

Also define a relation σ on \mathbb{C} as $z_1 \sigma z_2$ if and only if $|z_1| = |z_2|$.

- (a) Prove that ρ is a partial order on \mathbb{C} . (5)
- (b) Prove that ρ is a well-ordering of $\mathbb{Z}[i]$. (5)
- (c) Prove that σ is an equivalence relation on \mathbb{C} .
- (d) What are the equivalence classes of σ ? (Provide a geometric description.) (5)
- **3** For real numbers a, b with a < b, we define the *closed interval* $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$ and the *open interval* $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$.
 - (a) Prove that the closed interval [0,1] is equinumerous with the open interval (0,1). (5)
 - (b) Provide an explicit bijection between \mathbb{R} and $\mathbb{R} \setminus \{0\}$.

(c) Prove that the set of all finite sequences of natural numbers is countable. (5)

^{4 (}a) Use a diagonalization argument to prove that the set of all infinite sequences of natural numbers is uncountable. (5)
(b) Conclude that the set of all functions N → N is uncountable. (5)