CS21001 Discrete Structures, Autumn 2007

Mid-semester examination

Total marks: 60

September 2007

[Answer all questions. Be brief and precise.]

1 Consider the following recursive C function.

```
unsigned int f ( unsigned int n )
{
    if ((n == 0) || (n == 1)) return 0;
    if ((n%2) == 0) return 1 + f(n/2);
    return 1 + f(5*n+1);
}
```

(a) What does f(19) return?

Solution We have f(19) = 1 + f(96) = 2 + f(48) = 3 + f(24) = 4 + f(12) = 5 + f(6) = 6 + f(3) = 7 + f(16) = 8 + f(8) = 9 + f(4) = 10 + f(2) = 11 + f(1) = 11 + 0 = 11.

(b) What does f(5) return?

Solution We have $f(5) = 1 + f(26) = 2 + f(13) = 3 + f(66) = 4 + f(33) = 5 + f(166) = 6 + f(83) = 7 + f(416) = 8 + f(208) = 9 + f(104) = 10 + f(52) = 11 + f(26) = 12 + f(13) = \cdots = 22 + f(13) = \cdots = 32 + f(13) = \cdots = 42 + f(13) = \cdots$. Thus the above function does not terminate when 5 is passed as its argument. When the recursion stack runs out of memory, it exits with an error message (typically segmentation fault).

(c) What can you conclude about f as a function $\mathbb{N} \to \mathbb{N}$?

Solution The sequence of computation in Part (b) implies that f(13) = 10 + f(13), i.e., f is not well-defined as a function $\mathbb{N} \to \mathbb{N}$.

- 2 Let C denote the set of complex numbers and Z[i] the subset {a + ib | a, b ∈ Z} of C. Elements of Z[i] are called *Gaussian integers*. For z = x + iy ∈ C, we denote by |z| the magnitude of z and by arg z the argument of z. Thus, z = √x² + y² and arg z = tan⁻¹ (^y/_x). We take arg z in the interval [0, 2π). Define a relation ρ on C as follows. Take z₁, z₂ ∈ C. We say that z₁ ρ z₂ if and only if
 - either (i) $|z_1| < |z_2|$,
 - or (ii) $|z_1| = |z_2|$ and $\arg z_1 \leqslant \arg z_2$.
 - Also define a relation σ on \mathbb{C} as $z_1 \sigma z_2$ if and only if $|z_1| = |z_2|$.
 - (a) Prove that ρ is a partial order on \mathbb{C} .

Solution Let $z, z_1, z_2, z_3 \in \mathbb{C}$. We have |z| = |z| and $\arg z \leq \arg z$, i.e., $z \rho z$, i.e., ρ is reflexive. Then suppose $z_1 \rho z_2$ and $z_2 \rho z_1$. If $|z_1| < |z_2|$, we cannot have $z_2 \rho z_1$. Analogously, if $|z_2| < |z_1|$, we cannot have $z_1 \rho z_2$. Therefore, $|z_1| = |z_2|$. In that case, $\arg z_1 \leq \arg z_2$ and $\arg z_2 \leq \arg z_1$, i.e., $\arg z_1 = \arg z_2$. It follows that $z_1 = z_2$, i.e., ρ is antisymmetric. Finally, let $z_1 \rho z_2$ and $z_2 \rho z_3$. This means $|z_1| \leq |z_2| \leq |z_3|$. If $|z_1| < |z_2|$ or $|z_2| < |z_3|$, then $|z_1| < |z_3|$, i.e., $z_1 \rho z_3$. If $|z_1| = |z_2| = |z_3|$, we have $\arg z_1 \leq \arg z_2 \leq \arg z_3$, i.e., $\operatorname{again} z_1 \rho z_3$. Thus, ρ is transitive.

(b) Prove that ρ is a well-ordering of $\mathbb{Z}[i]$.

Solution Let S be a non-empty subset of $\mathbb{Z}[i]$. Consider the set $X = \{|z|^2 \mid z \in S\}$. X, being a non-empty subset of \mathbb{N} , contains a minimum element; call it n. Let $Y = \{z \in S \mid |z|^2 = n\}$. Since the equation $x^2 + y^2 = n$ can have only finitely many solutions in integer values of x and y, the set Y is finite. It is also non-empty. Thus, Y contains a minimum element; call it z. It is clear that this z is the minimum element of S with respect to ρ . (5)

(5)

(5)

(5)

(5)

(c) Prove that σ is an equivalence relation on \mathbb{C} .

Solution Let $z, z_1, z_2, z_3 \in \mathbb{C}$. Since |z| = |z|, we have $z \sigma z$, i.e., σ is reflexive. Also $z_1 \sigma z_2$ implies $|z_1| = |z_2|$, i.e., $|z_2| = |z_1|$, i.e., $z_2 \sigma z_1$, i.e., σ is symmetric. Finally, $z_1 \sigma z_2$ and $z_2 \sigma z_3$ imply $|z_1| = |z_2| = |z_3|$, i.e., $z_1 \sigma z_3$, i.e., σ is transitive too.

(d) What are the equivalence classes of σ ? (Provide a geometric description.)

Solution Let $z = x + iy \in \mathbb{C}$ with $r = \sqrt{x^2 + y^2}$. Then $[z]_{\sigma}$ consists precisely of all complex numbers whose absolute values equal r, i.e., $[z]_{\sigma}$ is the circle of radius r centered at the origin.

- **3** For real numbers a, b with a < b, we define the *closed interval* $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$ and the *open interval* $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$.
 - (a) Prove that the closed interval [0, 1] is equinumerous with the open interval (0, 1).

Solution The inclusion map $f : (0,1) \to [0,1]$ taking $x \mapsto x$ is injective. Also the map $g : [0,1] \to (0,1)$ taking $x \mapsto \frac{1}{4} + \frac{x}{2}$ is an (injective) embedding of [0,1] in the interval $[\frac{1}{4}, \frac{3}{4}]$ which is a subset of (0,1).

(b) Provide an explicit bijection between \mathbb{R} and $\mathbb{R} \setminus \{0\}$.

Solution For $n \in \mathbb{N}$, denote $I_n = [n, n+1)$ and $J_n = (n, n+1]$. For any fixed n, the map $f_n : I_n \to J_n$ taking $x \mapsto (2n+1) - x$ is a bijection. We have the disjoint unions $\mathbb{R} = (-\infty, 0) \cup (\bigcup_{n \in \mathbb{N}} I_n)$ and $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (\bigcup_{n \in \mathbb{N}} J_n)$. The map that relocates I_n to J_n using f_n for all $n \in \mathbb{N}$ and that fixes $(-\infty, 0)$ element-wise is a bijection $\mathbb{R} \to \mathbb{R} \setminus \{0\}$.

4 (a) Use a diagonalization argument to prove that the set of all infinite sequences of natural numbers is uncountable.(5)

Solution Let A be the set of all infinite sequences of natural numbers. Suppose that A is countable. Then there exists a bijective map $f : \mathbb{N} \to A$. Denote by f(n) the sequence $a_{n0}, a_{n1}, a_{n2}, \ldots$ Define an infinite sequence $b_0, b_1, b_2, \ldots, b_n, \ldots$ of natural numbers as follows:

$$b_n = \begin{cases} 2 & \text{if } a_{nn} = 1, \\ 1 & \text{if } a_{nn} \neq 1. \end{cases}$$

Since f is bijective, the sequence b_0, b_1, b_2, \ldots is equal to f(n) for some $n \in \mathbb{N}$. But $b_n \neq a_{nn}$ by construction, i.e., the sequence b_0, b_1, b_2, \ldots is different from f(n), a contradiction.

(b) Conclude that the set of all functions $\mathbb{N} \to \mathbb{N}$ is uncountable.

Solution Every sequence $a_0, a_1, a_2, \ldots, a_n, \ldots$ of natural numbers can be viewed as the unique function $\mathbb{N} \to \mathbb{N}$ taking $n \mapsto a_n$.

(c) Prove that the set of all finite sequences of natural numbers is countable.

Solution Let C be the set of all finite sequences of natural numbers. We have $C = \bigcup_{n \in \mathbb{N}} C_n$, where C_n is the set of all sequences of natural numbers of length n. Since C_n can be viewed as the set \mathbb{N}^n of all (ordered) n-tuples of natural numbers and since \mathbb{N}^n is countable for every $n \in \mathbb{N}$, each C_n is countable. Therefore, C is the union of countably many countable sets and so is countable too.

(5)

(5)

(5)

(5)

(5)