CS21001 Discrete Structures, Autumn 2007

End-semester examination

Total marks: 100November 2007Duration	: 3 hours
---------------------------------------	-----------

[Answer all questions. Be brief and precise. Show all important steps.]

- **1** Let $m \in \mathbb{N}$, $m \ge 2$, be a fixed modulus. Choose an arbitrary element $a_0 \in \mathbb{Z}_m$. For $n \ge 1$, define $a_n = a_{n-1}^2 + 1 \pmod{m}$. Prove that the sequence $a_0, a_1, a_2, \dots, a_n, \dots$ must be eventually periodic. (10) (**Remark:** This sequence a_0, a_1, a_2, \dots is used in Pollard's rho algorithm for factoring integers.)
- 2 Recall that a *derangement* of 1, 2, 3, ..., n is a permutation π₁, π₂, π₃, ..., π_n of 1, 2, 3, ..., n with π_i ≠ i for all i = 1, 2, 3, ..., n. Let D_n denote the number of derangements of 1, 2, 3, ..., n. Provide a combinatorial argument to establish that D_{n+1} = n(D_n + D_{n-1}) for all n ≥ 2. (10)
 (Hint: You may proceed as follows. Let π₁, π₂, ..., π_{n+1} be a derangement of 1, 2, ..., n + 1. Look at i with π_i = n + 1. Separately consider the two cases π_{n+1} = i and π_{n+1} ≠ i.)
- **3** Solve the following recurrence relation:

 $\begin{array}{rcl} a_0 &=& 1, \\ a_1 &=& 3, \\ 2a_n &=& 3a_{n-1}-a_{n-2}+1 \quad \mbox{ for } n \geqslant 2. \end{array}$

4 Let S be a set, and let $\mathcal{P}(S)$ denote the power set of S (i.e., the set of all subsets of S). Define an operation Δ on $\mathcal{P}(S)$ as $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ (the symmetric difference of $A, B \in \mathcal{P}(S)$).

(a) Prove that $\mathcal{P}(S)$ is an Abelian (i.e., commutative) group under the operation Δ . (10)

(b) In this part only, suppose that S is a finite set of size n = |S|. Prove that $(\mathcal{P}(S), \Delta)$ is isomorphic to the additive group \mathbb{Z}_2^n (the *n*-fold Cartesian product of \mathbb{Z}_2). (10)

- **5** Let (G, *) be a group. For subsets A, B of G, define $A * B = \{a * b \mid a \in A, b \in B\}$. Let H be a non-empty subset of G. Prove the following assertions.
 - (a) If H is a subgroup of G, then H * H = H. (5)
 - (b) If H * H = H, then H need not be a subgroup of G.
 - (c) If H is finite and H * H = H, then H is a subgroup of G.
- 6 Prove that every subgroup of $(\mathbb{Z}, +)$ is cyclic.
- 7 Let A denote the set of all functions $\mathbb{Z} \to \mathbb{Z}$. Define addition and multiplication of $f, g \in A$ as (f+g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n) for all $n \in \mathbb{Z}$. Prove that under these operations A is a commutative ring with identity. What are the units in A? (10)
- 8 Let R be an integral domain and $A = R \times (R \setminus \{0\})$. Define a relation \sim on A as $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Prove that \sim is an equivalence relation on A.

Denote the equivalence class of $(a, b) \in A$ as a/b. Also let K denote the set of all equivalence classes of \sim . Define addition and multiplication in K as (a/b) + (c/d) = (ad + bc)/(bd) and (a/b)(c/d) = (ac)/(bd).

- (b) Prove that these operations are well-defined.
- (c) Prove that K is a field under these operations.

(5)

(5)

(10)

(10)

(10)

(5)

(5)

(5)