
CS21001 Discrete Structures, Autumn 2007

End-semester examination

Total marks: 100 November 2007 Duration: 3 hours

[Answer all questions. Be brief and precise. Show all important steps.]

1 Let m ∈ N, m > 2, be a fixed modulus. Choose an arbitrary elementa0 ∈ Zm. For n > 1, define
an = a2

n−1 + 1 (mod m). Prove that the sequencea0, a1, a2, . . . , an, . . . must be eventually periodic. (10)

(Remark: This sequencea0, a1, a2, . . . is used in Pollard’s rho algorithm for factoring integers.)

Solution Consider the firstm + 1 termsa0, a1, . . . , am in the sequence. Since all these terms
are elements ofZm (which has sizem), by the pigeon-hole principle, there exists a repetition
among these values, i.e.,ai = aj for somei, j with 0 6 i < j 6 m. But thenai+1 = (a2

i +1) =
(a2

j +1) = aj+1 (mod m), and soai+2 = (a2
i+1+1) = (a2

j+1+1) = aj+2 (mod m), and so on.
Call t = j − i. We then haveak = at+k for all k > i, i.e., the sequencea0, a1, a2, . . . , an, . . .
is eventually periodic.

2 Recall that aderangement of 1, 2, 3, . . . , n is a permutationπ1, π2, π3, . . . , πn of 1, 2, 3, . . . , n with πi 6= i
for all i = 1, 2, 3, . . . , n. Let Dn denote the number of derangements of1, 2, 3, . . . , n. Provide a
combinatorial argument to establish thatDn+1 = n(Dn + Dn−1) for all n > 2. (10)

(Hint: You may proceed as follows. Letπ1, π2, . . . , πn+1 be a derangement of1, 2, . . . , n + 1. Look at i
with πi = n + 1. Separately consider the two casesπn+1 = i andπn+1 6= i.)

Solution First note that there aren possible values ofi with πi = n + 1. Let πn+1 = j. If
j = i, theni, n + 1 form a cycle (a transposition) andπ (without this transposition) produces a
derangement of the remainingn − 1 elements1, 2, . . . , i − 1, i + 1, . . . , n. On the other hand,
if j 6= i, thenn + 1 belongs to a bigger cycle(i, n + 1, j, . . .). Removingn + 1 from this cycle
produces a derangement of1, 2, . . . , n.

3 Solve the following recurrence relation: (10)

a0 = 1,

a1 = 3,

2an = 3an−1 − an−2 + 1 for n > 2.

Solution The characteristic equation for this recurrence isx2 = 1

2
(3x−1), i.e.,x2− 3

2
x+ 1

2
= 0,

i.e., (x − 1)(x − 1

2
) = 0. This has two simple rootsx = 1, 1

2
. Thus,an = bn + cn, where

the homogeneous solutionbn is of the form bn = u + v
(

1

2

)n
and the particular solution

cn is of the form cn = wn. We first determinew from 2cn = 3cn−1 − cn−2 + 1, i.e.,

2wn = 3w(n − 1) − w(n − 2) + 1, i.e.,w = 1, i.e., cn = n. Thus,an = u + v
(

1

2

)n
+ n.

Now,a0 = 1 = u + v anda1 = 3 = u + (v/2) + 1. Solving this system yieldsu = 3, v = −2.
Therefore,an = n + 3 − 1

2n−1 for all n ∈ N.

4 Let S be a set, and letP(S) denote the power set ofS (i.e., the set of all subsets ofS). Define an operation
∆ onP(S) asA∆ B = (A\B)∪(B\A) = (A∪B)\(A∩B) (the symmetric difference ofA,B ∈ P(S)).

(a) Prove thatP(S) is an Abelian (i.e., commutative) group under the operation∆. (10)
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Solution [Closure] For anyA,B ⊆ S, we clearly haveA∆ B ⊆ S.

[Associative] LetA,B,C ⊆ S. Then, using Venn diagrams or manipulation of set identities,
one can show that both(A∆ B)∆ C and A∆ (B ∆ C) comprise only those elements of
A ∪ B ∪ C, that belong to exactly one or all of the setsA,B,C.

[Identity] The null set∅ is the identity ofP(S).

[Inverse] For everyA ⊆ S, we haveA∆ A = (A ∪A) \ (A ∩A) = A \A = ∅, i.e.,A itself is
the inverse ofA.

[Commutative] Evident.

(b) In this part only, suppose thatS is a finite set of sizen = |S|. Prove that(P(S),∆) is isomorphic to
the additive groupZn

2 (then-fold Cartesian product ofZ2). (10)

Solution Let S = {a1, a2, . . . , an}. For a subsetA ⊆ S and fora ∈ S, defineχa(A) =
{

0 if a /∈ A,
1 if a ∈ A.

Define a functionf : P(S) → Z
n
2 asf(A) = (χa1

(A), χa2
(A), . . . , χan

(A)).

Let A,B ⊆ S. ThenA∆ B consists precisely of those elements that are in exactly oneof the
setsA,B, i.e., those elementsa for which (χa(A) = 1 andχa(B) = 0) or (χa(A) = 0 and
χa(B) = 1). Now, let r, s ∈ Z2. If (r = 1, s = 0) or (r = 0, s = 1), thenr + s = 1 in Z2.
On the other hand, if (r = s = 0) or (r = s = 1), thenr + s = 0 in Z2. It, therefore, follows
that f(A∆ B) = f(A) + f(B), i.e., f is indeed a homomorphism of groups. It remains to
establish thatf is bijective. Since two different subsetsA,B of S differ with respect to the
inclusion of at least one element,f(A) 6= f(B), i.e., f is injective. Furthermore, given an
n-tuple(x1, x2, . . . , xn) ∈ Z

n
2 , we construct the subsetA of S asai ∈ A if and only if xi = 1.

We clearly havef(A) = (x1, x2, . . . , xn), i.e.,f is surjective too.

5 Let (G, ∗) be a group. For subsetsA,B of G, defineA∗B = {a∗b | a ∈ A, b ∈ B}. LetH be a non-empty
subset ofG. Prove the following assertions.

(a) If H is a subgroup ofG, thenH ∗ H = H. (5)

Solution Let e denote the identity element ofG. SinceH is closed under∗, we have
H ∗ H ⊆ H. On the other hand,e ∈ H, and soH = {e} ∗ H ⊆ H ∗ H.

(b) If H ∗ H = H, thenH need not be a subgroup ofG. (5)

Solution Let G = Z and∗ be integer addition. TakeH = N. AlthoughN + N = N, N is not a
subgroup ofZ, since inverses of elements (other than0) do not reside inN.

(c) If H is finite andH ∗ H = H, thenH is a subgroup ofG. (5)

Solution Take anyh ∈ H. SinceH ∗ H = H, the elementsh, h ∗ h, h ∗ h ∗ h, . . . all belong
to H. H being finite, these elements cannot be all distinct, i.e.,h ∗ h ∗ · · · ∗ h (i times) =
h ∗ h ∗ · · · ∗ h (j times) for somei, j with 0 6 i < j. Call t = j − i. By cancellation (in
G), h ∗ h ∗ · · · ∗ h (t times) = e, i.e., e ∈ H. Let h′ = h ∗ h ∗ · · · ∗ h (t − 1 times). Then
h′ ∗ h = h ∗ h′ = e, i.e.,h′ = h−1 ∈ H. Finally, H ∗ H = H implies closure ofH under∗.

6 Prove that every subgroup of(Z,+) is cyclic. (10)

Solution Let H be a subgroup ofZ. If H = {0}, thenH is generated by0. So assume
thatH contains a non-zero integera. SinceH is closed under taking inverses,−a ∈ H, i.e.,
without loss of generality we may assume thatH contains a positive integer. Leth be the
smallest positive integer inH. For any integera ∈ H, we write a = qh + r, whereq and
r are the quotient and the remainder of Euclidean division ofa by h with 0 6 r < h. Also
r = a − qh ∈ H, sincea, h ∈ H and H is a subgroup ofZ. The construction ofh (its
minimality) then implies thatr = 0, i.e., a = qh. Therefore,H ⊆ 〈h〉. On the other hand,
sinceh ∈ H andH is a subgroup,〈h〉 ⊆ H.
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7 Let A denote the set of all functionsZ → Z. Define addition and multiplication off, g ∈ A as
(f + g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n) for all n ∈ Z. Prove that under these operations
A is a commutative ring with identity. What are the units inA? (10)

Solution Let f, g, h ∈ A.

[Closure of+] Evident.

[Associativity of +] ((f + g) + h)(n) = (f + g)(n) + h(n) = (f(n) + g(n)) + h(n) =
f(n) + (g(n) + h(n)) = f(n) + (g + h)(n) = (f + (g + h))(n) for all n ∈ Z, so
(f + g) + h = f + (g + h).

[Identity of +] The zero function0 that takes everyn ∈ Z to 0.

[Inverse of+] (−f)(n) = −f(n) for all n ∈ Z.

[Commutativity of+] (f + g)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n) for all n ∈ Z,
sof + g = g + f .

[Closure of·] Evident.

[Associativity of ·] ((fg)h)(n) = (fg)(n)h(n) = (f(n)g(n))h(n) = f(n)(g(n)h(n)) =
f(n)(gh)(n) = (f(gh))(n) for all n ∈ Z, so(fg)h = f(gh).

[Identity of ·] The constant function1 that maps everyn ∈ Z to 1.

[Commutativity of·] (fg)(n) = f(n)g(n) = g(n)f(n) = (gf)(n) for all n ∈ Z, sofg = gf .

[Distributivity of · over +] For everyn ∈ Z, we have(f(g + h))(n) = f(n)(g + h)(n) =
f(n)(g(n) + h(n)) = f(n)g(n) + f(n)h(n) = (fg)(n) + (fh)(n) = (fg + fh)(n), i.e.,
f(g + h) = fg + fh. Similarly, (f + g)h = fh + gh.

Units of A: Let f ∈ A be (multiplicatively) invertible, i.e., there existsg ∈ A such that
fg = gf = 1, i.e., f(n)g(n) = g(n)f(n) = 1 for all n ∈ Z. This means that each
f(n) ∈ {1,−1}. Conversely, givenf ∈ A with the property thatIm f ⊆ {1,−1}, we have
f(n)f(n) = 1 for all n ∈ Z, i.e.,f is invertible.

8 Let R be an integral domain andA = R× (R \ {0}). Define a relation∼ onA as(a, b) ∼ (c, d) if and only
if ad = bc.

(a) Prove that∼ is an equivalence relation onA. (5)

Solution Let a, c, e ∈ R andb, d, f ∈ R \ {0}. Sinceab = ba, we have(a, b) ∼ (a, b), i.e.,
∼ is reflexive. If(a, b) ∼ (c, d), thenad = bc, i.e.,bc = ad, i.e.,cb = da, i.e.,(c, d) ∼ (a, b),
i.e.,∼ is symmetric. Finally, let(a, b) ∼ (c, d) and(c, d) ∼ (e, f), i.e.,ad = bc andcf = de,
i.e.,adf = bcf = bde, i.e.,adf = bde, i.e.,af = be (sinced 6= 0), i.e.,(a, b) ∼ (e, f), i.e.,∼
is transitive.

Denote the equivalence class of(a, b) ∈ A asa/b. Also letK denote the set of all equivalence classes of∼.
Define addition and multiplication inK as(a/b) + (c/d) = (ad + bc)/(bd) and(a/b)(c/d) = (ac)/(bd).

(b) Prove that these operations are well-defined. (5)

Solution Let a/b = a′/b′ and c/d = c′/d′, i.e., ab′ = a′b and cd′ = c′d. But then
(ad + bc)(b′d′) = ab′dd′ + bb′cd′ = a′bdd′ + bb′c′d = bd(a′d′ + b′c′), i.e.,(ad + bc)/(bd) =
(a′d′ + b′c′)/(b′d′). Similarly, (ac)(b′d′) = (ad′)(b′c) = (a′d)(bc′) = (bd)(a′c′), i.e.,
(ac)/(bd) = (a′c′)/(b′d′).

(c) Prove thatK is a field under these operations. (5)

Solution One can check (do it!) thatK is a commutative ring. The additive identity is0/1 and
the multiplicative identity is1/1. Moreover, every non-zeroa/b (with botha, b ∈ Z \ {0}) has
the inverseb/a. ThusK is a field.
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