CS21001 Discrete Structures, Autumn 2007

End-semester examination

Total marks: 100 November 2007 Duration: 3 hours

[Answer all questions. Be brief and precise. Show all impursteps.

1Letm € N, m > 2, be a fixed modulus. Choose an arbitrary elementc Z,,. Forn > 1, define
an = a2_, + 1 (mod m). Prove that the sequeneg, a1, as, . . . , a,, . .. must be eventually periodic. ~ (10)

(Remark: This sequencey, ay,as, ... is used in Pollard’s rho algorithm for factoring integers.)

Solution  Consider the firsin 4+ 1 termsag, a1, . . . , a,, in the sequence. Since all these terms
are elements d%,,, (which has sizen), by the pigeon-hole principle, there exists a repetition
among these values, i.e,,= a; for somei, j with 0 < i < j < m. Butthena; 1 = (a?+1) =
(a3+1) = aj41 (mod m), and sau; 2 = (a7, ,+1) = (a3,,41) = aj 2 (mod m), and so on.
Callt = j —i. We then have, = a;, i forall k£ > i, i.e., the sequena®), ay, as, ..., ay, ...

is eventually periodic.

2 Recall that aderangement of 1,2, 3, ..., n is a permutationry, 7o, 73, ..., 7, of 1,23 ... nwith m; # i
forall « = 1,2,3,...,n. Let D, denote the number of derangementsio®, 3,...,n. Provide a
combinatorial argument to establish tiaf ., = n(D,, + D,,—1) forall n > 2. (10)
(Hint: You may proceed as follows. Let,7s,..., 7,11 be a derangement af2,... n + 1. Look ati

with m; = n + 1. Separately consider the two cases.; = ¢ andm, 1 # i.)

Solution  First note that there are possible values of with 7; = n + 1. Letm, 1 = j. If
j =1, theni,n + 1 form a cycle (a transposition) and(without this transposition) produces a

derangement of the remaining— 1 elementsl, 2,...,i — 1,7+ 1,...,n. On the other hand,
if j # i, thenn + 1 belongs to a bigger cyclg,n + 1, j,...). Removingn + 1 from this cycle
produces a derangementioR, ... n.
3 Solve the following recurrence relation: (10)
ag = 1,
ay = 3,
2a, = 3ap_1—0Gn_o+1 forn>2.

Solution The characteristic equation for this recurrence?s= 1 (3z—1), i.e.,z>—3z+1 = 0,
i.e., (z —1)(z — %) = 0. This has two simple roots = 1, 1. Thus,a, = b, + ¢,, where
the homogeneous solutidp, is of the formb, = u + v (%)n and the particular solution
¢, is of the forme,, = wn. We first determinew from 2¢,, = 3c¢,—1 — ch—o + 1, i.€.,
2un = 3w(n —1) —w(n —2) + 1,i.e.,w = 1,i.e.,¢, = n. Thus,a, = u+v (%)n + n.
Now,ap =1 = u+vanda; = 3 = u+ (v/2) + 1. Solving this system yields = 3, v = —2.
Thereforea, = n + 3 — 5+ foralln € N.

4 Let S be a set, and |6P(S) denote the power set ¢f (i.e., the set of all subsets 6f). Define an operation
AonP(S)asAAB = (A\B)U(B\A) = (AUB)\ (AN B) (the symmetric difference ol, B € P(5)).

(@ Prove thatP(S) is an Abelian (i.e., commutative) group under the operation (20)
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Solution [Closure] For anyd, B C S, we clearly haveA A B C S.

[Associative] LetA, B,C C S. Then, using Venn diagrams or manipulation of set idestitie
one can show that bothd A B) AC and AA (B AC) comprise only those elements of
AU B U C, that belong to exactly one or all of the setsB, C.

[Identity] The null set) is the identity of P(S).

[Inverse] Foreveryd C S,wehaveAA A= (AUA)\(ANA)=A\A=10,ie, Aitselfis
the inverse ofA.

[Commutative] Evident.

(b) In this part only, suppose thatis a finite set of sizew = |S|. Prove that{’P(S), A) is isomorphic to

the additive groufZs (then-fold Cartesian product df).

Solution Let S = {aj,az,...,a,}. Forasubsed C S and fora € S, definex,(A) =

{(1’ :I a i ﬁ’ Define a functionf : P(S) — Z asf(A) = (xa, (A)s Xay (A), - - -+ Xa, (A)).
a .
Let A, B C S. ThenA A B consists precisely of those elements that are in exactlyobiiee

setsA, B, i.e., those elements for which (y,(A) = 1 andx,(B) = 0) or (x,(4) = 0 and
Xq(B) = 1). Now, letr,s € Zs. If (r =1,s =0)or (r =0,s = 1), thenr + s = 1in Zs.
On the other hand, if{= s = 0) or (r = s = 1), thenr + s = 0 in Zs. It, therefore, follows

that f(AAB) = f(A) + f(B), i.e., f is indeed a homomorphism of groups. It remains to

establish thatf is bijective. Since two different subsets B of S differ with respect to the
inclusion of at least one element(A) # f(B), i.e., f is injective. Furthermore, given an
n-tuple (z1, zo, ..., x,) € Z5, we construct the subset of S asa; € A if and only if x; = 1.
We clearly havef(A) = (x1,x2,...,x,), i.€., f IS surjective too.

(10)

5 Let (G, %) be a group. For subsets B of G, defineAx B = {axb | a € A,b € B}. Let H be a non-empty

subset of7. Prove the following assertions.
(& If Hisasubgroup of7, thenH « H = H.

Solution  Let e denote the identity element @F. Since H is closed under, we have
H x H C H. Onthe other hand, € H, and soH = {e} « H C H % H.

(b) If H+ H = H,thenH need not be a subgroup 6f

Solution Let G = Z andx be integer addition. Tak& = N. AlthoughN + N = N, Nis not a
subgroup ofZ, since inverses of elements (other tligmo not reside irN.

(c) If Hisfinite andH « H = H, thenH is a subgroup of.

Solution Take anyh € H. SinceH « H = H, the element&, h « h,h x h * h, ... all belong
to H. H being finite, these elements cannot be all distinct, hex,h * --- x h (i times) =

h*hx*---xh (jtimes) for some, j with 0 < ¢ < j. Callt = 5 — 7. By cancellation (in
G), h*hx*---xh (ttimes)= e, i.e.,e € H. Leth’ = hxh*---xh (t —1times). Then
W s«h=hxh'=e,ie., b/ =h~! e H.Finally, H« H = H implies closure ofd undersx.

6 Prove that every subgroup @, +) is cyclic.

Solution Let H be a subgroup oZ. If H = {0}, then H is generated by. So assume
that H contains a non-zero integer SinceH is closed under taking inversesa € H, i.e.,
without loss of generality we may assume tlfatcontains a positive integer. Lét be the
smallest positive integer iff. For any integen € H, we writea = gh + r, whereq and
r are the quotient and the remainder of Euclidean division bf h with 0 < r < h. Also
r = a—qh € H, sincea,h € H and H is a subgroup ofZ. The construction of. (its
minimality) then implies that = 0, i.e.,a = ¢gh. Therefore,H C (h). On the other hand,
sinceh € H andH is a subgroup{h) C H.

— Page 2 of 3 —

©®)

()

®)

(10)



7 Let A denote the set of all function& — 7Z. Define addition and multiplication of,g € A as
(f +9)(n) = f(n) +g(n)and(fg)(n) = f(n)g(n) for all n € Z. Prove that under these operations
A is a commutative ring with identity. What are the unitsdf (10)

Solution Let f,g,h € A.
[Closure of-+] Evident.

[Associativity of +] ((f + g) + h)(n
f(n) + (g(n) + h(n)) = f(n) + (
(f+g9)+h=[f+(g+h).

[Identity of +] The zero functiorD that takes every. € Z to 0.

[Inverse of+] (—f)(n) = —f(n) foralln € Z.

[Commutativity of+] (f + ¢)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n) foralln € Z,
sof+g=g+/f.

[Closure of-] Evident.

[Associativity of ] ((fg)h)(n) = (fg)(m)h(n) = (F(n)g(n))h(n) = f(n)(g(n)h(n)) =
f(n)(gh)(n) = (f(gh))(n) foralln € Z, so(fg)h = f(gh).

[Identity of -] The constant functior that maps every. € Z to 1.

[Commutativity of ] (fg)(n) = f(n)g(n) = g(n)(n) = (¢)(n) foralln € Z, sofg = g.
[Distributivity of - over +] For everyn € Z, we have(f(g + h))(n) = f(n)(g + h)(n) =
f(n)(g(n) + h(n)) = f(n)g(n) + f(n)h(n) = (fg)(n) + (fh)(n) = (fg + fh)(n), ie.,
f(g+h) = fg+ fh. Similarly, (f + g)h = fh + gh.

Units of A: Let f € A be (multiplicatively) invertible, i.e., there exists € A such that
fg = gf = 1,ie, f(n)g(n) = g(n)f(n) = 1foral n € Z. This means that each
f(n) € {1,—1}. Conversely, givery € A with the property thaim f C {1,—1}, we have
f(n)f(n) =1foralln € Z, i.e., f is invertible.

<
_|_

) = 9)(n) + h(n) = (f(n) +g(n)) + h(n) =
g+ h)(n) = (f+ (g +h)(n) foral n € Z, so

8 Let R be an integral domain and = R x (R\ {0}). Define a relation~ on A as(a,b) ~ (¢, d) if and only
if ad = be.

(@) Prove that~ is an equivalence relation od. 5

Solution Leta,c,e € Randb,d, f € R\ {0}. Sinceab = ba, we have(a,b) ~ (a,b), i.e.,
~ is reflexive. If(a,b) ~ (¢,d), thenad = b, i.e.,bc = ad, i.e.,cb = da, i.e.,(c,d) ~ (a,b),
i.e., ~ is symmetric. Finally, leta,b) ~ (¢,d) and(c,d) ~ (e, f), i.e.,ad = bc andcf = de,
i.e.,adf = bef = bde, i.e.,adf = bde, i.e.,af = be (sinced # 0), i.e.,(a,b) ~ (e, f), i.e.,~
Is transitive.

Denote the equivalence class(afb) € A asa/b. Also let K denote the set of all equivalence classes of
Define addition and multiplication i& as(a/b) + (¢/d) = (ad + bc)/(bd) and(a/b)(c/d) = (ac)/(bd).

(b) Prove that these operations are well-defined. 5)

Solution Leta/b = d//V andc¢/d = /d, i.e.,al = d'banded = d. But then
(ad + be)(b'd") = ab/dd + bb'ed = a’bdd + bb'd'd = bd(a'd + V'), i.e.,(ad + bc)/(bd) =
(a'd + b'd)/(b'd). Similarly, (ac)(t/d) = (ad')(b'c) = (d'd)(bd) = (bd)(d'), i.e.,
(ac)/(bd) = (a'd)/(V'd).

(c) Prove thatK is a field under these operations. 5B

Solution One can check (do it!) that’ is a commutative ring. The additive identity(g1 and
the multiplicative identity isl /1. Moreover, every non-zera/b (with botha,b € Z \ {0}) has
the inverseh/a. ThusK is a field.
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