CS21001 Discrete Structures, Autumn 2007

End-semester examination

Total marks: 100	November 2007	Duration: 3 hours

[Answer all questions. Be brief and precise. Show all important steps.]

1 Let $m \in \mathbb{N}$, $m \ge 2$, be a fixed modulus. Choose an arbitrary element $a_0 \in \mathbb{Z}_m$. For $n \ge 1$, define $a_n = a_{n-1}^2 + 1 \pmod{m}$. Prove that the sequence $a_0, a_1, a_2, \ldots, a_n, \ldots$ must be eventually periodic. (10) (**Remark:** This sequence a_0, a_1, a_2, \ldots is used in Pollard's rho algorithm for factoring integers.)

Solution Consider the first m + 1 terms a_0, a_1, \ldots, a_m in the sequence. Since all these terms are elements of \mathbb{Z}_m (which has size m), by the pigeon-hole principle, there exists a repetition among these values, i.e., $a_i = a_j$ for some i, j with $0 \le i < j \le m$. But then $a_{i+1} = (a_i^2 + 1) = (a_j^2 + 1) = a_{j+1} \pmod{m}$, and so $a_{i+2} = (a_{i+1}^2 + 1) = (a_{j+1}^2 + 1) = a_{j+2} \pmod{m}$, and so on. Call t = j - i. We then have $a_k = a_{t+k}$ for all $k \ge i$, i.e., the sequence $a_0, a_1, a_2, \ldots, a_n, \ldots$ is eventually periodic.

2 Recall that a *derangement* of 1, 2, 3, ..., n is a permutation π₁, π₂, π₃, ..., π_n of 1, 2, 3, ..., n with π_i ≠ i for all i = 1, 2, 3, ..., n. Let D_n denote the number of derangements of 1, 2, 3, ..., n. Provide a combinatorial argument to establish that D_{n+1} = n(D_n + D_{n-1}) for all n ≥ 2. (10)
(Hint: You may proceed as follows. Let π₁, π₂, ..., π_{n+1} be a derangement of 1, 2, ..., n + 1. Look at i with π_i = n + 1. Separately consider the two cases π_{n+1} = i and π_{n+1} ≠ i.)

Solution First note that there are n possible values of i with $\pi_i = n + 1$. Let $\pi_{n+1} = j$. If j = i, then i, n + 1 form a cycle (a transposition) and π (without this transposition) produces a derangement of the remaining n - 1 elements $1, 2, \ldots, i - 1, i + 1, \ldots, n$. On the other hand, if $j \neq i$, then n + 1 belongs to a bigger cycle $(i, n + 1, j, \ldots)$. Removing n + 1 from this cycle produces a derangement of $1, 2, \ldots, n$.

3 Solve the following recurrence relation:

 $a_0 = 1,$ $a_1 = 3,$ $2a_n = 3a_{n-1} - a_{n-2} + 1 \text{ for } n \ge 2.$

Solution The characteristic equation for this recurrence is $x^2 = \frac{1}{2}(3x-1)$, i.e., $x^2 - \frac{3}{2}x + \frac{1}{2} = 0$, i.e., $(x-1)(x-\frac{1}{2}) = 0$. This has two simple roots $x = 1, \frac{1}{2}$. Thus, $a_n = b_n + c_n$, where the homogeneous solution b_n is of the form $b_n = u + v\left(\frac{1}{2}\right)^n$ and the particular solution c_n is of the form $c_n = wn$. We first determine w from $2c_n = 3c_{n-1} - c_{n-2} + 1$, i.e., 2wn = 3w(n-1) - w(n-2) + 1, i.e., w = 1, i.e., $c_n = n$. Thus, $a_n = u + v\left(\frac{1}{2}\right)^n + n$. Now, $a_0 = 1 = u + v$ and $a_1 = 3 = u + (v/2) + 1$. Solving this system yields u = 3, v = -2. Therefore, $a_n = n + 3 - \frac{1}{2^{n-1}}$ for all $n \in \mathbb{N}$.

- 4 Let S be a set, and let $\mathcal{P}(S)$ denote the power set of S (i.e., the set of all subsets of S). Define an operation Δ on $\mathcal{P}(S)$ as $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ (the symmetric difference of $A, B \in \mathcal{P}(S)$).
 - (a) Prove that $\mathcal{P}(S)$ is an Abelian (i.e., commutative) group under the operation Δ .

(10)

(10)

Solution [Closure] For any $A, B \subseteq S$, we clearly have $A \Delta B \subseteq S$.

[Associative] Let $A, B, C \subseteq S$. Then, using Venn diagrams or manipulation of set identities, one can show that both $(A \Delta B) \Delta C$ and $A \Delta (B \Delta C)$ comprise only those elements of $A \cup B \cup C$, that belong to exactly one or all of the sets A, B, C.

[Identity] The null set \emptyset is the identity of $\mathcal{P}(S)$.

[Inverse] For every $A \subseteq S$, we have $A \Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$, i.e., A itself is the inverse of A.

[Commutative] Evident.

(b) In this part only, suppose that S is a finite set of size n = |S|. Prove that $(\mathcal{P}(S), \Delta)$ is isomorphic to the additive group \mathbb{Z}_2^n (the *n*-fold Cartesian product of \mathbb{Z}_2). (10)

Solution Let $S = \{a_1, a_2, \ldots, a_n\}$. For a subset $A \subseteq S$ and for $a \in S$, define $\chi_a(A) = \begin{cases} 0 & \text{if } a \notin A, \text{ Define a function } f : \mathcal{P}(S) \to \mathbb{Z}_2^n \text{ as } f(A) = (\chi_{a_1}(A), \chi_{a_2}(A), \ldots, \chi_{a_n}(A)). \\ 1 & \text{if } a \in A. \end{cases}$ Let $A, B \subseteq S$. Then $A \Delta B$ consists precisely of those elements that are in exactly one of the sets A, B, i.e., those elements a for which $(\chi_a(A) = 1 \text{ and } \chi_a(B) = 0)$ or $(\chi_a(A) = 0 \text{ and } \chi_a(B) = 1)$. Now, let $r, s \in \mathbb{Z}_2$. If (r = 1, s = 0) or (r = 0, s = 1), then r + s = 1 in \mathbb{Z}_2 . On the other hand, if (r = s = 0) or (r = s = 1), then r + s = 0 in \mathbb{Z}_2 . It, therefore, follows that $f(A \Delta B) = f(A) + f(B)$, i.e., f is indeed a homomorphism of groups. It remains to establish that f is bijective. Since two different subsets A, B of S differ with respect to the inclusion of at least one element, $f(A) \neq f(B)$, i.e., f is injective. Furthermore, given an n-tuple $(x_1, x_2, \ldots, x_n) \in \mathbb{Z}_2^n$, we construct the subset A of S as $a_i \in A$ if and only if $x_i = 1$. We clearly have $f(A) = (x_1, x_2, \ldots, x_n)$, i.e., f is surjective too.

- **5** Let (G, *) be a group. For subsets A, B of G, define $A * B = \{a * b \mid a \in A, b \in B\}$. Let H be a non-empty subset of G. Prove the following assertions.
 - (a) If H is a subgroup of G, then H * H = H.

Solution Let e denote the identity element of G. Since H is closed under *, we have $H * H \subseteq H$. On the other hand, $e \in H$, and so $H = \{e\} * H \subseteq H * H$.

(b) If H * H = H, then H need not be a subgroup of G.

Solution Let $G = \mathbb{Z}$ and * be integer addition. Take $H = \mathbb{N}$. Although $\mathbb{N} + \mathbb{N} = \mathbb{N}$, \mathbb{N} is not a subgroup of \mathbb{Z} , since inverses of elements (other than 0) do not reside in \mathbb{N} .

(c) If H is finite and H * H = H, then H is a subgroup of G.

Solution Take any $h \in H$. Since H * H = H, the elements h, h * h, h * h * h, ... all belong to H. H being finite, these elements cannot be all distinct, i.e., h * h * ... * h (*i* times) = h * h * ... * h (*j* times) for some i, j with $0 \le i < j$. Call t = j - i. By cancellation (in G), h * h * ... * h (*t* times) = e, i.e., $e \in H$. Let h' = h * h * ... * h (t - 1 times). Then h' * h = h * h' = e, i.e., $h' = h^{-1} \in H$. Finally, H * H = H implies closure of H under *.

6 Prove that every subgroup of $(\mathbb{Z}, +)$ is cyclic.

Solution Let H be a subgroup of \mathbb{Z} . If $H = \{0\}$, then H is generated by 0. So assume that H contains a non-zero integer a. Since H is closed under taking inverses, $-a \in H$, i.e., without loss of generality we may assume that H contains a positive integer. Let h be the smallest positive integer in H. For any integer $a \in H$, we write a = qh + r, where q and r are the quotient and the remainder of Euclidean division of a by h with $0 \leq r < h$. Also $r = a - qh \in H$, since $a, h \in H$ and H is a subgroup of \mathbb{Z} . The construction of h (its minimality) then implies that r = 0, i.e., a = qh. Therefore, $H \subseteq \langle h \rangle$. On the other hand, since $h \in H$ and H is a subgroup, $\langle h \rangle \subseteq H$.

(10)

(5)

(5)

(5)

7 Let A denote the set of all functions $\mathbb{Z} \to \mathbb{Z}$. Define addition and multiplication of $f, g \in A$ as (f+g)(n) = f(n) + g(n) and (fg)(n) = f(n)g(n) for all $n \in \mathbb{Z}$. Prove that under these operations A is a commutative ring with identity. What are the units in A? (10)

Solution Let $f, g, h \in A$. [Closure of +] Evident. [Associativity of +] ((f + g) + h)(n) = (f + g)(n) + h(n) = (f(n) + g(n)) + h(n) =f(n) + (g(n) + h(n)) = f(n) + (g + h)(n) = (f + (g + h))(n) for all $n \in \mathbb{Z}$, so (f+g) + h = f + (g+h).[Identity of +] The zero function 0 that takes every $n \in \mathbb{Z}$ to 0. [Inverse of +] (-f)(n) = -f(n) for all $n \in \mathbb{Z}$. [Commutativity of +] (f + g)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n) for all $n \in \mathbb{Z}$, so f + g = g + f. [Closure of \cdot] Evident. [Associativity of \cdot] ((fg)h)(n) = (fg)(n)h(n) = (f(n)g(n))h(n) = f(n)(g(n)h(n)) =f(n)(gh)(n) = (f(gh))(n) for all $n \in \mathbb{Z}$, so (fg)h = f(gh). [Identity of \cdot] The constant function 1 that maps every $n \in \mathbb{Z}$ to 1. [Commutativity of \cdot] (fg)(n) = f(n)g(n) = g(n)f(n) = (gf)(n) for all $n \in \mathbb{Z}$, so fg = gf. [Distributivity of \cdot over +] For every $n \in \mathbb{Z}$, we have (f(g+h))(n) = f(n)(g+h)(n) =f(n)(g(n) + h(n)) = f(n)g(n) + f(n)h(n) = (fg)(n) + (fh)(n) = (fg + fh)(n), i.e., f(g+h) = fg + fh. Similarly, (f+g)h = fh + gh. **Units of** A: Let $f \in A$ be (multiplicatively) invertible, i.e., there exists $q \in A$ such that fg = gf = 1, i.e., f(n)g(n) = g(n)f(n) = 1 for all $n \in \mathbb{Z}$. This means that each $f(n) \in \{1, -1\}$. Conversely, given $f \in A$ with the property that Im $f \subseteq \{1, -1\}$, we have

- 8 Let R be an integral domain and $A = R \times (R \setminus \{0\})$. Define a relation \sim on A as $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Prove that \sim is an equivalence relation on A.

f(n)f(n) = 1 for all $n \in \mathbb{Z}$, i.e., f is invertible.

Solution Let $a, c, e \in R$ and $b, d, f \in R \setminus \{0\}$. Since ab = ba, we have $(a, b) \sim (a, b)$, i.e., \sim is reflexive. If $(a, b) \sim (c, d)$, then ad = bc, i.e., bc = ad, i.e., cb = da, i.e., $(c, d) \sim (a, b)$, i.e., \sim is symmetric. Finally, let $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, i.e., ad = bc and cf = de, i.e., adf = bcf = bde, i.e., adf = bde, i.e., af = be (since $d \neq 0$), i.e., $(a, b) \sim (e, f)$, i.e., \sim is transitive.

Denote the equivalence class of $(a, b) \in A$ as a/b. Also let K denote the set of all equivalence classes of \sim . Define addition and multiplication in K as (a/b) + (c/d) = (ad + bc)/(bd) and (a/b)(c/d) = (ac)/(bd).

(b) Prove that these operations are well-defined.

Solution Let a/b = a'/b' and c/d = c'/d', i.e., ab' = a'b and cd' = c'd. But then (ad + bc)(b'd') = ab'dd' + bb'cd' = a'bdd' + bb'c'd = bd(a'd' + b'c'), i.e., (ad + bc)/(bd) = (a'd' + b'c')/(b'd'). Similarly, (ac)(b'd') = (ad')(b'c) = (a'd)(bc') = (bd)(a'c'), i.e., (ac)/(bd) = (a'c')/(b'd').

(c) Prove that K is a field under these operations.

Solution One can check (do it!) that K is a commutative ring. The additive identity is 0/1 and the multiplicative identity is 1/1. Moreover, every non-zero a/b (with both $a, b \in \mathbb{Z} \setminus \{0\}$) has the inverse b/a. Thus K is a field.

(5)

(5)

(5)