CS21001 Discrete Structures, Autumn 2007

Class test 1

Total marks: 50	September 06, 2007 (6:00-7:00pm)	Duration: 1 hour
Roll No:	Name:	

[Write your answers in the respective spaces provided in the question paper itself. Answer briefly.]

1 Prove or disprove the following assertions.

(a) Let p, q, r, s be atomic propositions. Then, the compound proposition $p \wedge r \rightarrow q \vee \neg s$ is logically equivalent to the compound proposition $p \wedge s \rightarrow q \vee \neg r$.

(b) Let P(x), Q(x) be predicates. Then the proposition $(\exists x)[P(x)] \to (\exists y)[Q(y)]$ is logically equivalent to $(\exists x)(\exists y)[P(x) \to Q(y)]$.

(c) Let $f : A \to B$ and $g : B \to C$ be functions such that $g \circ f : A \to C$ is a bijection. Then f must be a bijection too.

(d) The antisymmetric closure of a relation ρ on a set A exists if and only if ρ itself is antisymmetric.

(e) There exists a relation that well-orders \mathbb{Z} .

(5 × 5)

 $F_{2n} = F_n(F_{n+1} + F_{n-1})$ and $F_{2n+1} = F_{n+1}^2 + F_n^2$ for all $n \ge 1$.

3 Let $f : \mathbb{N} \to \mathbb{N}$ be a bijection not equal to the identity map. Prove that there exists $n \in \mathbb{N}$ such that n < f(n)and $n < f^{-1}(n)$. (10)