CS21001 Discrete Structures, Autumn 2006

Mid-semester examination

	Tota	al marks: 100	September 15, 2006 (AN): S-302 (B)	Duration: 2 hours	
			[Answer <u>all</u> questions]		
1.	Let	p, q be propositions, an	d $P(x), Q(x), R(x)$ be predicates.		
	 (a) Prove that (p ∨ q) ⇒ (p ∧ q) is logically equivalent to p ⇔ q. (b) Prove that (p ∧ q) ⇒ (p ∨ q) is a tautology. (c) What is the contrapositive of ∀x [P(x)] ⇒ ∃x [Q(x) ∨ R(x)]? (d) Write in English the converse of the following assertion: "If I wake up early, I attend the lecture, unless I have a headache." 			((5)
				((5)
				((5)
				((5)
	(e)	Write in English the n "The sum of any two	egation of the following assertion: odd integers is an even integer."	((5)

2. Let a_n be the value returned by the following C function upon input n. (Assume that C supports arbitrarily big integers, so that no overflow occurs during arithmetic operations.)

```
unsigned int a ( unsigned int n )
{
    unsigned int sum, i;
    if (n == 0) return 1;
    sum = 0;
    for (i=0; i<n; ++i) sum += a(i);
    return sum;
}</pre>
```

- (a) Derive a recurrence relation for the sequence $a_n, n \ge 0$.
- (b) Prove by induction on n that $a_n = 2^{n-1}$ for all $n \ge 1$.
- **3.** For $n \ge 0$ let A_n denote the set $\{0, 1, 2, ..., 3^n 1\}$. Moreover, let B_n be the set of those elements of A_n whose ternary representations (representations in base 3) contain 1, and C_n the set of those elements of A_n whose ternary representations do not contain 1. The ternary representations of some small integers are:

(10)

(10)

 $0 = (0)_3 = (00)_3 = (000)_3 = (0000)_3 = \cdots$ $1 = (1)_3 = (01)_3 = (001)_3 = (0001)_3 = \cdots$ $2 = (2)_3 = (02)_3 = (002)_3 = (0002)_3 = \cdots$ $3 = (10)_3 = (010)_3 = (0010)_3 = \cdots$ $4 = (11)_3 = (011)_3 = (0011)_3 = \cdots$ $5 = (12)_3 = (012)_3 = (0012)_3 = \cdots$ $6 = (20)_3 = (020)_3 = (0020)_3 = \cdots$ $7 = (21)_3 = (021)_3 = (0021)_3 = \cdots$ $8 = (22)_3 = (022)_3 = (0022)_3 = \cdots$ $9 = (100)_3 = (0100)_3 = \cdots$ $10 = (101)_3 = (0101)_3 = \cdots$ It follows that:

Let r_n denote the size of C_n , s_n the sum of elements of B_n , and t_n the sum of elements of C_n . For example, $r_2 = 4$, $s_2 = 1 + 3 + 4 + 5 + 7 = 20$, and $t_2 = 0 + 2 + 6 + 8 = 16$.

(a) Prove that $r_n = 2^n$ for all $n \ge 0$. (5)

(10)

(5)

(b) Deduce that t_n satisfies the recurrence relation:

$$t_0 = 0,$$

$$t_n = 2t_{n-1} + \frac{1}{3} \times 6^n \text{ for all } n \ge 1.$$

- (c) Solve the above recurrence relation in order to derive that $t_n = \frac{1}{2}(6^n 2^n)$ for all $n \ge 0$. (10)
- (d) Conclude that $s_n = \frac{1}{2}(9^n 6^n 3^n + 2^n)$ for all $n \ge 0$. (5)
- **4.** Let $k \in \mathbb{N}$, $S = \{1, 2, ..., k\}$, and $A = \mathcal{P}(S) \setminus \{\emptyset\}$, where $\mathcal{P}(S)$ denotes the power set of S, and \emptyset denotes the empty set. In other words, the set A comprises all non-empty subsets of $\{1, 2, ..., k\}$. For each $a \in A$ denote by $\min(a)$ the smallest element of a (notice that here a is a set).

(a) Define a relation ρ on A as follows: $a \rho b$ if and only if $\min(a) = \min(b)$. Prove that ρ is an equivalence relation on A. (5)

(b) What is the size of the quotient set A/ρ ?

(c) Define a relation σ on A as follows: $a \sigma b$ if and only if either a = b or $\min(a) < \min(b)$. Prove that σ is a partial order on A. (5)

- (d) Is σ also a total order on A? (5)
- (e) What is the total number of antisymmetric relations on a finite set of size n? (5)