CS21001 Discrete Structures, Autumn 2006 Mid-semester examination: Solutions

Total marks: 100 September 15, 2006 (AN): S-302 (B) Duration: 2 ho
--

- **1.** Let p, q be propositions, and P(x), Q(x), R(x) be predicates.
 - (a) Prove that $(p \lor q) \Rightarrow (p \land q)$ is logically equivalent to $p \Leftrightarrow q$.

Solution $(p \lor q) \Rightarrow (p \land q) \equiv \neg (p \lor q) \lor (p \land q) \equiv (\neg p \land \neg q) \lor (p \land q) \equiv p \Leftrightarrow q.$

(b) Prove that $(p \land q) \Rightarrow (p \lor q)$ is a tautology.

Solution $(p \land q) \Rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q) \equiv (\neg p \lor \neg q) \lor (p \lor q) \equiv (\neg p \lor p) \lor (\neg q \lor q) \equiv$ True \lor True \equiv True.

(c) What is the contraposition of $\forall x [P(x)] \Rightarrow \exists x [Q(x) \lor R(x)]$?

Solution $\forall x [\neg Q(x) \land \neg R(x)] \Rightarrow \exists x [\neg P(x)].$

(d) Write in English the converse of the following assertion: "If I wake up early, I attend the lecture, unless I have a headache."

Solution "If I attend the lecture, I wake (have woken) up early and do not have a headache."

(e) Write in English the negation of the following assertion: "The sum of any two odd integers is an even integer."

Solution "There exist two odd integers the sum of which is an odd integer."

2. Let a_n be the value returned by the following C function upon input n.

```
unsigned int a ( unsigned int n )
{
    unsigned int sum, i;
    if (n == 0) return 1;
    sum = 0;
    for (i=0; i<n; ++i) sum += a(i);
    return sum;
}</pre>
```

(a) Derive a recurrence relation for the sequence $a_n, n \ge 0$.

Solution

 $a_0 = 1,$ $a_n = a_{n-1} + a_{n-2} + \dots + a_1 + a_0 \text{ for } n \ge 1.$

(b) Prove by induction on n that $a_n = 2^{n-1}$ for all $n \ge 1$.

Solution [Basis] For n = 1 we have $a_1 = a_0 = 1 = 2^{1-1}$.

[Induction] Suppose $a_i = 2^{i-1}$ for i = 1, 2, ..., n. But then $a_{n+1} = (a_n + a_{n-1} + \dots + a_2 + a_1) + a_0 = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) + 1 = (2^n - 1) + 1 = 2^n = 2^{(n+1)-1}$.

3. For $n \ge 0$ let A_n denote the set $\{0, 1, 2, \dots, 3^n - 1\}$. Moreover, let B_n be the set of those elements of A_n whose ternary representations (representations in base 3) contain 1, and C_n the set of those elements of A_n whose ternary representations do not contain 1. The ternary representations of some small integers are:

 $0 = (0)_3 = (00)_3 = (000)_3 = (0000)_3 = \cdots$ $1 = (1)_3 = (01)_3 = (001)_3 = (0001)_3 = \cdots$ $2 = (2)_3 = (02)_3 = (002)_3 = (0002)_3 = \cdots$ $3 = (10)_3 = (010)_3 = (0010)_3 = \cdots$ $4 = (11)_3 = (011)_3 = (0011)_3 = \cdots$ $5 = (12)_3 = (012)_3 = (0012)_3 = \cdots$ $6 = (20)_3 = (020)_3 = (0020)_3 = \cdots$ $7 = (21)_3 = (021)_3 = (0021)_3 = \cdots$ $8 = (22)_3 = (022)_3 = (0022)_3 = \cdots$ $9 = (100)_3 = (0100)_3 = \cdots$ $10 = (101)_3 = (0101)_3 = \cdots$

It follows that:

Let r_n denote the size of C_n , s_n the sum of elements of B_n , and t_n the sum of elements of C_n . For example, $r_2 = 4$, $s_2 = 1 + 3 + 4 + 5 + 7 = 20$, and $t_2 = 0 + 2 + 6 + 8 = 16$.

(a) Prove that $r_n = 2^n$ for all $n \ge 0$.

Solution Represent each element of A_n as a string of exactly n ternary digits 0, 1, 2. For $n \ge 1$, the set A_n is the disjoint union of $0A_{n-1}$, $1A_{n-1}$ and $2A_{n-1}$ each containing 3^{n-1} elements. The elements of $1A_{n-1}$ contain 1 and hence do not belong to C_n . On the other hand, each of $0A_{n-1}$ and $2A_{n-1}$ contains exactly r_{n-1} integers having no 1 in the ternary representation. It then follows that $r_n = 2r_{n-1}$ for $n \ge 1$. Finally, $r_0 = 1$. By repeated substitution, one can easily derive that $r_n = 2^n$ for all $n \ge 0$.

(b) Deduce that t_n satisfies the recurrence relation:

$$\begin{aligned} t_0 &= 0, \\ t_n &= 2t_{n-1} + \frac{1}{3} \times 6^n \ \text{for all} \ n \geqslant 1. \end{aligned}$$

Solution The subset $0A_{n-1}$ contributes t_{n-1} to the sum t_n . The subset $1A_{n-1}$ contributes nothing to the sum t_n . Finally, the subset $2A_{n-1}$ contributes $2 \times 3^{n-1} \times r_{n-1} + t_{n-1}$ to the sum t_n .

(c) Solve the above recurrence relation in order to derive that $t_n = \frac{1}{2}(6^n - 2^n)$ for all $n \ge 0$.

Solution The characteristic equation x - 2 = 0 has a simple root 2. Therefore, a particular solution is of the form $u6^n$. Plugging in this solution in the recurrence gives $u6^n = 2u6^{n-1} + 2 \times 6^{n-1}$, i.e., 6u = 2u + 2, i.e., $u = \frac{1}{2}$. A general solution is of the form $t_n = v2^n + \frac{1}{2} \times 6^n$. The initial condition gives $t_0 = 0 = v + \frac{1}{2}$, i.e., $v = -\frac{1}{2}$. Therefore, $t_n = \frac{1}{2}(6^n - 2^n)$.

(d) Conclude that $s_n = \frac{1}{2}(9^n - 6^n - 3^n + 2^n)$ for all $n \ge 0$.

Solution We have $s_n + t_n = 0 + 1 + 2 + \dots + (3^n - 1) = 3^n (3^n - 1)/2 = \frac{1}{2}(9^n - 3^n)$. Plugging in the formula for t_n as derived in the last part yields $s_n = \frac{1}{2}(9^n - 3^n) - \frac{1}{2}(6^n - 2^n) = \frac{1}{2}(9^n - 6^n - 3^n + 2^n)$.

4. Let k ∈ N, S = {1,2,...,k}, and A = P(S) \ {∅}, where P(S) denotes the power set of S, and ∅ denotes the empty set. In other words, the set A comprises all non-empty subsets of {1,2,...,k}. For each a ∈ A denote by min(a) the smallest element of a (notice that here a is a set).

— Page 2 of 3 —

(a) Define a relation ρ on A as follows: $a \rho b$ if and only if $\min(a) = \min(b)$. Prove that ρ is an equivalence relation on A.

Solution [Reflexive] For any $a \in A$ we have $\min(a) = \min(a)$.

[Symmetric] For any $a, b \in A$, if $\min(a) = \min(b)$, then $\min(b) = \min(a)$.

[Transitive] For any $a, b, c \in A$, if $\min(a) = \min(b)$ and $\min(b) = \min(c)$, then $\min(a) = \min(c)$.

(b) What is the size of the quotient set A/ρ ?

Solution Any two non-empty subsets of S having the same minimum element are related. On the other hand, two subsets of S having different minimum elements are not related. Therefore, each equivalence class of ρ has a one-to-one correspondence with an element of S (the minimum element of every member in the class). Since S contains k elements, there are exactly k equivalence classes, i.e., the size of A/ρ is k.

(c) Define a relation σ on A as follows: $a \sigma b$ if and only if either a = b or $\min(a) < \min(b)$. Prove that σ is a partial order on A.

Solution [Reflexive] By definition, every element is related to itself.

[Antisymmetric] Take two elements $a, b \in A$. Suppose that $a \sigma b$ and $b \sigma a$. If $a \neq b$, then by definition, $\min(a) < \min(b)$ and $\min(b) < \min(a)$, which is impossible. So we must have a = b.

[Transitive] Suppose $a \sigma b$ and $b \sigma c$ for some $a, b, c \in A$. If a = b or b = c, then clearly $a \sigma c$. So suppose that $a \neq b$ and $b \neq c$. But then $\min(a) < \min(b)$ and $\min(b) < \min(c)$. This implies that $\min(a) < \min(c)$, i.e., $a \sigma c$.

(d) Is σ also a total order on A?

Solution No! Take $k \ge 2$. The sets $\{1\}$ and $\{1, 2\}$ are distinct, but have the same minimum element, and are, therefore, not comparable.

(e) What is the total number of antisymmetric relations on a finite set of size n?

Solution Let X be a set of size n and R an arbitrary antisymmetric relation on X. For each $x \in X$ there are two choices for the diagonal element (x, x): either include it in R or not. Both the choices are compatible with antisymmetry. So take two different elements $x, y \in X$. Antisymmetry demands that one of the following must be true:

- (1) Neither (x, y) nor (y, x) belongs to R.
- (2) (x, y) belongs to R, but (y, x) does not.
- (3) (y, x) belongs to R, but (x, y) does not.

There are $\binom{n}{2} = n(n-1)/2$ ways of choosing two distinct elements x, y from X. Therefore, the total number of antisymmetric relations on X is $2^n \times 3^{n(n-1)/2}$.