Solve the following exercises from the text book:

Section 3.1: 22,26,34. Section 3.2: 12,16. Section 3.3: 16,22,24. Section 3.5: 8,20,22,26,34.

Additional exercises

1. Let n be an odd positive integer and $\pi_1, \pi_2, \ldots, \pi_n$ a permutation of $1, 2, \ldots, n$. Prove that the product $\prod (i - \pi_i)$ is even. (**Hint:** Look at $\pi_1, \pi_3, \pi_5, \ldots, \pi_n$.) Show that the result need not hold if n is even.

2. Let a_1, a_2, \ldots, a_n be positive integers with $\sum_{i=1}^n a_i < 2^n - 1$. Prove that there exist distinct disjoint non-empty subsets A, B of $\{a_1, a_2, \dots, a_n\}$ with the property that $\sum_{a \in A} a = \sum_{b \in B} b$.

3. Prove the identity:
$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

- **4.** Count the solutions of the following:
 - (a) $x_1 + x_2 + x_3 + x_4 = 56$ with non-negative integers x_1, x_2, x_3, x_4 .
 - (b) $x_1 + x_2 + x_3 + x_4 = 56$ with positive integers x_1, x_2, x_3, x_4 .
 - (c) $x_1 + x_2 + x_3 + x_4 = 56$ with integers $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4$.
 - (d) $x_1 + x_2 + x_3 + x_4 \leq 56$ with non-negative integers x_1, x_2, x_3, x_4 . (Hint: Introduce x_5 .)
 - (e) $x_1 + x_2 + x_3 + x_4 \leq 56$ with integers $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4$.
 - (f) $x_1 + x_2 + x_3 + x_4 \ge 56$ with integers $x_1 \le 11, x_2 \le 22, x_3 \le 33, x_4 \le 44$. (Hint: Take $y_i := 11i x_i$.)
- 5. The principle of inclusion and exclusion is often stated in the following form. Prove it.

Let X be a set, $\mathcal{P}(X)$ the power set of X, and let $f, g: \mathcal{P}(X) \to \mathbb{R}$ be functions such that $f(A) = \sum_{S \subseteq A} g(S)$ for all subsets A of X. Then $g(A) = \sum_{S \subset A} (-1)^{|A| - |S|} f(S)$ for all subsets A of X.

6. Solve the following recurrence relations:

- (a) $a_0 = 2, a_n = 5a_{n-1} + (n^2 + n + 1)$ for $n \ge 1$.
- **(b)** $a_0 = 2, a_n = 5a_{n-1} + (n^2 + n + 1)2^n$ for $n \ge 1$.
- (c) $a_0 = 2, a_1 = 3, a_n = 2(a_{n-1} + a_{n-2} + 2^n)$ for $n \ge 2$.
- (d) $a_0 = 2, a_1 = 3, a_n = 4(a_{n-1} a_{n-2} + 2^n)$ for $n \ge 2$.
- (e) $a_0 = 2, a_1 = 3, a_n = 4(a_{n-1} a_{n-2} + n2^{2n-1})$ for $n \ge 2$.
- 7. Reduce the following recurrence relations to standard forms and solve:
 - (a) $a_0 = 2, a_1 = 3, a_n = a_{n+2} a_{n+1} n$ for all $n \ge 0$.
 - **(b)** $a_0 = 2, a_1 = 3, 4a_{n+1} + 8a_n 5a_{n-1} = 2^n$ for all $n \ge 1$.

 - (c) $a_0 = 2, a_1 = 3, a_n = a_{n-1} + 12(a_{n-2} + 2^{n-2})$ for all $n \ge 2$. (d) $a_0 = 2, a_n^3 = a_{n-1}(3a_n^2 3a_na_{n-1} + a_{n-1}^2) + n^3$ for all $n \ge 1$.

- (e) $a_0 = 2, a_1 = 3, 2a_n a_{n-2} 2a_{n-1}^2 3a_{n-1}a_{n-2} = 0$ for all $n \ge 2$.
- (f) $a_0 = 2, a_1 = 3, 2^{a_n} = 4^n \times 16^{a_{n-2}}$ for all $n \ge 2$.
- 8. Find big-O estimates for the following positive-integer-valued increasing functions f(n).
 - (a) $f(n) = 125f(n/4) + 2n^3$ whenever $n = 4^k$ for $k \in \mathbb{Z}^+$.
 - (b) $f(n) = 125f(n/5) + 2n^3$ whenever $n = 5^k$ for $k \in \mathbb{Z}^+$.
 - (c) $f(n) = 125f(n/6) + 2n^3$ whenever $n = 6^k$ for $k \in \mathbb{Z}^+$.
- 9. Let f(n) be an increasing positive-real-valued function of a non-negative integer variable n. Give a big-O estimate of f(n) for each of the following cases:
 - (a) $f(n) = 2f(\sqrt{n}) + 1$ whenever n is a perfect square bigger than 1.
 - (b) $f(n) = 2f(\sqrt{n}) + \log n$ whenever n is a perfect square bigger than 1.
 - (c) $f(n) = 2f(\sqrt{n}) + \log^2 n$ whenever n is a perfect square bigger than 1.
 - (d) $f(n) = af(\sqrt[b]{n}) + c(\log n)^d$ whenever n is a perfect b-th power bigger than 1. Here $a, b \in \mathbb{N}, a \ge 1$, $b \ge 2, c, d \in \mathbb{R}, c > 0$ and $d \ge 0$.