CS21001 Discrete Structures, Autumn 2006

End-semester examination

Total marks: 100 November 20, 2006 (AN): S-302 (B) Duration: 3 hours

[ Answer allquestion$

Consider the following C function:

unsigned int f ( unsigned int n)
{
if (n ==20) return O;
if (n %2 == 1) return 0;
return 1 + f(n(n+l)/2);
}

Denote byf (n) the value returned by the above function upon input

() Derive the values of (2), £(3), £(4), £(5), and f(6). (5)
Solution

f2)=1+f3)=14+0=1.

f(3)=0.

f(4)=1+f(10)=1+1+ f(55)=2+0=2.

f(5)=0

fe)=14+f21)=140=1.

(b) Notice that ifn is large, the computation ef(n + 1) /2 (argument for the recursive call) may lead to an overflow. UAss
that for some value of, no overflow occurs during any of the recursive calls. Arghat in this case the function terminates after
O(logm) number of recursive calls, whereis the argument of in the outermost call. (5)

Solution Letn = 2%¢ with ¢ odd. If s = 0, the function makes no recursive calls and retrnl s > 0, a
recursive call is made on(n + 1)/2. Sincen is even in this case; + 1 is odd, and sa(n +1)/2 = 25~ 1¢/

for some odd/. In other words, the exponent @fin the argument decreases by one in this case. After
exactly s iterations, the exponent reduces to zero (i.e., the argubeomes odd), and no further recursive
calls are made. So the number of recursive calls Butn > 2°, that is,s < logy n.

(C) Suppose that your machine suppd2sbit unsigned integers and during a multiplicatieb of unsigned integers, b, the

least significan82 bits of the actual product is returned. This means that ifgligno overflow during the multiplication, you get
the correct product. In case of an overflow, you obtain thetlemnificant32 bits of the correct product. Justify that in this case
too, the function make® (log n) number of recursive calls, whereis the argument of in the outermost call. (5)

Solution  We concentrate only on the case when an overflow occurs dtitfeigomputation of the product
n(n + 1). Heren = 25t with s > 0. Also sincen fits in a32-bit word, s < 32. (s cannot be32, sincen
would be zero in that case.) But+ 1 is odd and so the binary representatiomof. + 1) contains exactly
s trailing 0’s. The truncated product will, therefore, be of the fokf for some odd integer. When this is
divided by2, the argumen2*~!7 is passed to the recursive call. That is, in this case toogxtpenent of

in the argument reduces by exactly

(d) Describe (with proper justification) whgtn) returns for a positive integet. (5)

Solution Forn = 2%t with ¢ odd, the functionf(n) returnss, since each recursive call contributesind
there are exactly recursive calls.

() Deduce that the running time of the above functio®($og n). (5)
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Solution Each call off onn = 2%t with ¢ odd makes some constant work (checking whether 0 and
s =0). If s > 0, arecursive call is made. The argumert. + 1)/2 for the recursive call can be computed
in constant time. Finally, there are exactlyecursive calls and < log, n.

Argue (with proper justification) which of the following seis/are countable. (5x5)
(@) ThesetS: = {ncR|3"+2" =35}. (HereR is the set of real numbers.)

Solution [Countable] 3™ + 2™ is a strictly increasing function of and so we have

=35 ifn=3,
3"+2" ¢ <35 ifn<3,
>35 ifn>3.
It follows that S, = {3}, i.e., afinite (and so countable) set.
(b) ThesetS: = {2,3,5,7,...} of all (positive) prime integers.
Solution [Countable] S» is a subset of the countable $&t

(c) The setSs of all (finite) subsets oN whose sizes are odd.

Solution [Countable] LetA,, be the set of all subsets Bf of sizen. But thenSs is the (disjoint) union of
countably many setd,, A3, As,.... Each member ofi,, can be treated as an increasinguple of integers,
and under this identificatior,, is embedded ilN"™. But N" is countable and so each, is countable too.
To sum up,Ss is the union of countably many countable sets.

(d) The setS, of all subsets oN containing no odd integers.

Solution [Not countable]S; = P(E), whereE is the set of all even natural numbers. Sifiicis a countably
infinite set, its power set is not countable.

(6) The setSs of all functionsf : N — Z with the property thaf (n) = 0 except for finitely many. € N.

Solution [Countable] For eactf € Ss definesuppf = {n € N | f(n) # 0}, andmaxsupp f =
max(supp f) provided thatsupp f is non-empty. Ifsupp f = ), we takemaxsupp f = 0. Also for
n > 0 defineB, = {f € S5 | maxsupp f = n}. Thus,S; is the (disjoint) union of countably many
setsBy, B, B, .... EachB, has a bijective correspondence willt—! x (Z \ {0}) (select the values
f(), f(2),..., f(n—1) arbitrarily fromZ and the valug (n) from Z\ {0}). That s, eaclB,, is countable.

In this exercise we work in the semigrobpunder integer multiplication. Define a relatipronN asa p b if and only ifa has the
same set of prime divisors &s For example} is related t@25 = 52,12 = 22 x 3 s related tdhd = 2 x 32, but12 is not related
to16 = 2% nor to180 = 22 x 32 x 5.

(@) Prove thap is a congruence relation dX. (5)

Solution 1 first show thatp is an equivalence relation. Clearlyhas the same set of prime divisors as itself,
sop is reflexive, Also ifa has the same set of prime divisorsbas too has the same set of prime divisors as
a, i.e.,p is symmetric. Finally, ifa andb have the same set of prime divisors, @anahdc have the same set
of prime divisors,a andc too have the same set of prime divisors, iggs transitive.

Next | prove the congruence property @f Leta p b andc p d. Let{ps,...,ps} be the common set of
prime divisors ofa andb, and{qi, ..., ¢} the common set of prime divisors efandd. But then the set of
prime divisors for bothuc andbd is {p1, ..., ps} U{q,...,q}, i.e.,(ac) p (bd).

(b) Find the equivalence classesiop, 3,4 and6. (5)
Solution
1] = {1},
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2] = {2']ix>1},
B = {3'[ix>1},
4 = {2'[i>1},
[6] {237 | i,j > 1}.

(C) A non-zero integer is calleshuare-free if it is not divisible by the square of a prime number. Provatteach equivalence
class inN/p contains a unique square-free integer, and that these eisiguare-free integers are different in distinct equivegen
classes. (5)

Solution Leta € N have the prime factorization = p{* ---p{* with ¢ > 0, pairwise distinct primes
p1,--.,p:, and eacke; > 0. But thena is related to the square-free integer- - - p;. No other square-free
integer can have the same prime divisorgas - p;. Thus|a] contains a unique square-free integer. Also if
[a] # [b], we havela] N [b] = 0 (p is an equivalence relation and so the equivalence classgtsopaN), i.e.,
the square-free integers ja] and|[b] are distinct.

() LetG be the set of all invertible (i.e., non-singul@r)< 2 matrices with real entries. Prove thatis a group under matrix
multiplication. (5)

Solution [Closure] The product of two invertible matrices is againdrtible.
[Associativity] Matrix multiplication is associative.

[Identity] The identity matrix is invertible.

[Inverse]G contains invertible matrices only.

(b) Define thecenter Z(G) of G as:

Z(G)={A€ G| AP = PA forall P € G}.

Prove thatZ (G) is a normal subgroup aF. (5)

Solution First | show thatZ (G) is a subgroup ofi. Let A, B € Z(G), i.e.,AP = PAandBP = PB for
all P € G. Butthen for anyP € G we have(AB~Y)P = A(B~'P) = A(P7!B)~! = A(BP™Y)7! =
A(PB™Y) = (AP)B~! = (PA)B~! = P(AB7Y),i.e.,, AB™! € Z(G).

ForanyP € Gwe havePZ(G) = {PA| A€ Z(G)} ={AP | A€ Z(G)} = Z(G)P,i.e.,Z(G)isa
normal subgroup ofs.

(© DerivethatZ(G)—{(g O> |a€R,a;éO}. (5)

a

Solution Let A = (CCL Z) be an arbitrary member df (G). The matrixP, = ((1) (1)) is invertible, and

soAP, = PAimplies (2 *) = (¢ @), ie.b=c a=d ie,Amustbe of the form{ ¢ °).
d c a b b a

Now takePP, = G é) But thenAP, = P, A gives( > i.e.,a =a+b,

a+b a>

<a+b a+b
a+b b

a b

2). SinceA is non-singular, we must have# 0.

i.e.,b = 0. Therefore,A must be of the forrr(é

a O a 0 .
0 a>P—aIP—aP—Pa—PaI—P(O a>,|.e.,every

matrix of the form (g 2) commutes with every element 6f.

Conversely, note that for anf € G, (

(d) A matrix A € G is said to besimilar to a matrixB € G if B = PAP™* for someP € G. Prove that similarity is an
equivalence relation of. (5)

Solution [Reflexive] A = TAI~!.
[Symmetric] If B = PAP™', A =QBQ~!, whereQ = P~ .
[Transitive] If B = PAP~! andC = QBQ~!, we haveC = QPAP~'Q~! = (QP)A(QP)~ .
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(e) Prove or disprove: Similarity is a congruence relationcan (5)

Solution [False] | prove the falsity of the assertion by contradictiSuppose that similarity is a congruence
relation onG. But then the equivalence classes under similarity areteafehe normal subgrouf]. If

A € Z(G), [A] = {A}, i.e., the only matrix similar tod is A itself. In particular,[I] = {I}. On the other
hand, ifA ¢ Z(G), there exists at least ore for which AP # PA, i.e.,, PAP~! # A, i.e.,[A] contains
more than one element(itself andPAP~! as chosen above). This contradicts the fact that each cbset o
a subgroup has the same size as the subgroup.

(f)  Forany fixedP € G, define the mag : G — G asfp(A) = PAP~'. Prove thatf is a group isomorphism. (5)

Solution  fr(AB) = P(AB)P™' = PAIBP™' = PA(P~'P)BP~! = (PAP Y)Y (PBP™!) =
fp(A)fp(B),i.e., fpis agroup homomorphism. Now suppoke(A) = fp(B),i.e., PAP~! = PBP~,
i.e, P~Y(PAP~Y)P = P~Y(PBP )P, i.e.,A = B. Thusf is injective. Finally, for everyB € G, we
havef(P~1BP) = P(P~'BP)P~! = B, i.e., fp is surjective too.

(9) Prove thatfy is the identity map o if and only if P € Z(G). (5)

Solution If P € Z(G), fp(A) = PAP™! = APP~1 = Aforall A € G. Conversely, ifP ¢ Z(G),
PA # AP for at least oned € G. Butthenf,(A) = PAP™1 # A.
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