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End-semester examination

Total marks: 100 November 20, 2006 (AN): S-302 (B) Duration: 3 hours

[ Answer allquestions]

1 Consider the following C function:

unsigned int f ( unsigned int n )

{

if (n == 0) return 0;

if (n % 2 == 1) return 0;

return 1 + f(n*(n+1)/2);

}

Denote byf(n) the value returned by the above function upon inputn.

(a) Derive the values off(2), f(3), f(4), f(5), andf(6). (5)

Solution

f(2) = 1 + f(3) = 1 + 0 = 1.

f(3) = 0.

f(4) = 1 + f(10) = 1 + 1 + f(55) = 2 + 0 = 2.

f(5) = 0.

f(6) = 1 + f(21) = 1 + 0 = 1.

(b) Notice that ifn is large, the computation ofn(n + 1)/2 (argument for the recursive call) may lead to an overflow. Assume

that for some value ofn, no overflow occurs during any of the recursive calls. Argue that in this case the function terminates after

O(log n) number of recursive calls, wheren is the argument off in the outermost call. (5)

Solution Let n = 2st with t odd. If s = 0, the function makes no recursive calls and returns0. If s > 0, a
recursive call is made onn(n+1)/2. Sincen is even in this case,n+1 is odd, and son(n+1)/2 = 2s−1t′

for some oddt′. In other words, the exponent of2 in the argument decreases by one in this case. After
exactlys iterations, the exponent reduces to zero (i.e., the argument becomes odd), and no further recursive
calls are made. So the number of recursive calls iss. But n > 2s, that is,s 6 log2 n.

(c) Suppose that your machine supports32-bit unsigned integers and during a multiplicationab of unsigned integersa, b, the

least significant32 bits of the actual product is returned. This means that if there is no overflow during the multiplication, you get

the correct product. In case of an overflow, you obtain the least significant32 bits of the correct product. Justify that in this case

too, the function makesO(log n) number of recursive calls, wheren is the argument off in the outermost call. (5)

Solution We concentrate only on the case when an overflow occurs duringthe computation of the product
n(n + 1). Heren = 2st with s > 0. Also sincen fits in a32-bit word, s < 32. (s cannot be32, sincen
would be zero in that case.) Butn + 1 is odd and so the binary representation ofn(n + 1) contains exactly
s trailing 0’s. The truncated product will, therefore, be of the form2sτ for some odd integerτ . When this is
divided by2, the argument2s−1τ is passed to the recursive call. That is, in this case too, theexponent of2
in the argument reduces by exactly1.

(d) Describe (with proper justification) whatf(n) returns for a positive integern. (5)

Solution For n = 2st with t odd, the functionf(n) returnss, since each recursive call contributes1 and
there are exactlys recursive calls.

(e) Deduce that the running time of the above function isO(log n). (5)
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Solution Each call off on n = 2st with t odd makes some constant work (checking whethern = 0 and
s = 0). If s > 0, a recursive call is made. The argumentn(n + 1)/2 for the recursive call can be computed
in constant time. Finally, there are exactlys recursive calls ands 6 log2 n.

2 Argue (with proper justification) which of the following sets is/are countable. (5×5)

(a) The setS1 = {n ∈ R | 3n + 2n = 35}. (HereR is the set of real numbers.)

Solution [Countable] 3n + 2n is a strictly increasing function ofn and so we have

3n + 2n







= 35 if n = 3,
< 35 if n < 3,
> 35 if n > 3.

It follows thatS1 = {3}, i.e., a finite (and so countable) set.

(b) The setS2 = {2, 3, 5, 7, . . .} of all (positive) prime integers.

Solution [Countable] S2 is a subset of the countable setN.

(c) The setS3 of all (finite) subsets ofN whose sizes are odd.

Solution [Countable] LetAn be the set of all subsets ofN of sizen. But thenS3 is the (disjoint) union of
countably many setsA1, A3, A5, . . . . Each member ofAn can be treated as an increasingn-tuple of integers,
and under this identificationAn is embedded inNn. But N

n is countable and so eachAn is countable too.
To sum up,S3 is the union of countably many countable sets.

(d) The setS4 of all subsets ofN containing no odd integers.

Solution [Not countable]S4 = P(E), whereE is the set of all even natural numbers. SinceE is a countably
infinite set, its power set is not countable.

(e) The setS5 of all functionsf : N → Z with the property thatf(n) = 0 except for finitely manyn ∈ N.

Solution [Countable] For eachf ∈ S5 definesupp f = {n ∈ N | f(n) 6= 0}, andmaxsupp f =
max(supp f) provided thatsupp f is non-empty. Ifsupp f = ∅, we takemaxsupp f = 0. Also for
n > 0 defineBn = {f ∈ S5 | maxsupp f = n}. Thus,S5 is the (disjoint) union of countably many
setsB0, B1, B2, . . . . EachBn has a bijective correspondence withZ

n−1 × (Z \ {0}) (select the values
f(1), f(2), . . . , f(n−1) arbitrarily fromZ and the valuef(n) from Z\{0}). That is, eachBn is countable.

3 In this exercise we work in the semigroupN under integer multiplication. Define a relationρ onN asa ρ b if and only if a has the

same set of prime divisors asb. For example,5 is related to25 = 52, 12 = 22 × 3 is related to54 = 2 × 33, but12 is not related

to 16 = 24 nor to180 = 22 × 32 × 5.

(a) Prove thatρ is a congruence relation onN. (5)

Solution I first show thatρ is an equivalence relation. Clearly,a has the same set of prime divisors as itself,
soρ is reflexive, Also ifa has the same set of prime divisors asb, b too has the same set of prime divisors as
a, i.e.,ρ is symmetric. Finally, ifa andb have the same set of prime divisors, andb andc have the same set
of prime divisors,a andc too have the same set of prime divisors, i.e.,ρ is transitive.

Next I prove the congruence property ofρ. Let a ρ b andc ρ d. Let {p1, . . . , ps} be the common set of
prime divisors ofa andb, and{q1, . . . , qt} the common set of prime divisors ofc andd. But then the set of
prime divisors for bothac andbd is {p1, . . . , ps} ∪ {q1, . . . , qt}, i.e.,(ac) ρ (bd).

(b) Find the equivalence classes of1, 2, 3, 4 and6. (5)

Solution

[1] = {1},
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[2] = {2i | i > 1},

[3] = {3i | i > 1},

[4] = {2i | i > 1},

[6] = {2i3j | i, j > 1}.

(c) A non-zero integer is calledsquare-free if it is not divisible by the square of a prime number. Prove that each equivalence

class inN/ρ contains a unique square-free integer, and that these unique square-free integers are different in distinct equivalence

classes. (5)

Solution Let a ∈ N have the prime factorizationa = pe1

1
· · · pet

t with t > 0, pairwise distinct primes
p1, . . . , pt, and eachei > 0. But thena is related to the square-free integerp1 · · · pt. No other square-free
integer can have the same prime divisors asp1 · · · pt. Thus[a] contains a unique square-free integer. Also if
[a] 6= [b], we have[a]∩ [b] = ∅ (ρ is an equivalence relation and so the equivalence classes partition N), i.e.,
the square-free integers in[a] and[b] are distinct.

4 (a) Let G be the set of all invertible (i.e., non-singular)2 × 2 matrices with real entries. Prove thatG is a group under matrix

multiplication. (5)

Solution [Closure] The product of two invertible matrices is again invertible.
[Associativity] Matrix multiplication is associative.
[Identity] The identity matrix is invertible.
[Inverse]G contains invertible matrices only.

(b) Define thecenter Z(G) of G as:

Z(G) = {A ∈ G | AP = PA for all P ∈ G} .

Prove thatZ(G) is a normal subgroup ofG. (5)

Solution First I show thatZ(G) is a subgroup ofG. Let A,B ∈ Z(G), i.e.,AP = PA andBP = PB for
all P ∈ G. But then for anyP ∈ G we have(AB−1)P = A(B−1P ) = A(P−1B)−1 = A(BP−1)−1 =
A(PB−1) = (AP )B−1 = (PA)B−1 = P (AB−1), i.e.,AB−1 ∈ Z(G).

For anyP ∈ G we havePZ(G) = {PA | A ∈ Z(G)} = {AP | A ∈ Z(G)} = Z(G)P , i.e.,Z(G) is a
normal subgroup ofG.

(c) Derive thatZ(G) =

{(

a 0
0 a

)

| a ∈ R, a 6= 0

}

. (5)

Solution Let A =

(

a b
c d

)

be an arbitrary member ofZ(G). The matrixP1 =

(

0 1
1 0

)

is invertible, and

soAP1 = P1A implies
(

b a
d c

)

=

(

c d
a b

)

, i.e., b = c, a = d, i.e., A must be of the form
(

a b
b a

)

.

Now takeP2 =

(

1 1
1 0

)

. But thenAP2 = P2A gives
(

a + b a
a + b b

)

=

(

a + b a + b
a b

)

, i.e.,a = a + b,

i.e.,b = 0. Therefore,A must be of the form
(

a 0
0 a

)

. SinceA is non-singular, we must havea 6= 0.

Conversely, note that for anyP ∈ G,
(

a 0
0 a

)

P = aIP = aP = Pa = PaI = P

(

a 0
0 a

)

, i.e., every

matrix of the form
(

a 0
0 a

)

commutes with every element ofG.

(d) A matrix A ∈ G is said to besimilar to a matrixB ∈ G if B = PAP−1 for someP ∈ G. Prove that similarity is an

equivalence relation onG. (5)

Solution [Reflexive] A = IAI−1.
[Symmetric] IfB = PAP−1, A = QBQ−1, whereQ = P−1.
[Transitive] If B = PAP−1 andC = QBQ−1, we haveC = QPAP−1Q−1 = (QP )A(QP )−1.
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(e) Prove or disprove: Similarity is a congruence relation onG. (5)

Solution [False] I prove the falsity of the assertion by contradiction. Suppose that similarity is a congruence
relation onG. But then the equivalence classes under similarity are cosets of the normal subgroup[I]. If
A ∈ Z(G), [A] = {A}, i.e., the only matrix similar toA is A itself. In particular,[I] = {I}. On the other
hand, ifA /∈ Z(G), there exists at least oneP for which AP 6= PA, i.e.,PAP−1 6= A, i.e., [A] contains
more than one element (A itself andPAP−1 as chosen above). This contradicts the fact that each coset of
a subgroup has the same size as the subgroup.

(f) For any fixedP ∈ G, define the mapfP : G → G asfP (A) = PAP−1. Prove thatfP is a group isomorphism. (5)

Solution fP (AB) = P (AB)P−1 = PAIBP−1 = PA(P−1P )BP−1 = (PAP−1)(PBP−1) =
fP (A)fP (B), i.e.,fP is a group homomorphism. Now supposefP (A) = fP (B), i.e.,PAP−1 = PBP−1,
i.e.,P−1(PAP−1)P = P−1(PBP−1)P , i.e.,A = B. ThusfP is injective. Finally, for everyB ∈ G, we
havef(P−1BP ) = P (P−1BP )P−1 = B, i.e.,fP is surjective too.

(g) Prove thatfP is the identity map onG if and only if P ∈ Z(G). (5)

Solution If P ∈ Z(G), fP (A) = PAP−1 = APP−1 = A for all A ∈ G. Conversely, ifP /∈ Z(G),
PA 6= AP for at least oneA ∈ G. But thenfP (A) = PAP−1 6= A.
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