CS21001 Discrete Structures, Autumn 2006

Class test 2

Total marks: 30	November 15, 2006 (6:00-7:00pm)	Duration: 1 hour
Roll No:	_ Name:	

1 (a) In this part, we show that $\mathbb{N} \times \mathbb{N}$ is equinumerous with \mathbb{N} . To that effect, define the map $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ as follows. Any $n \in \mathbb{N}$ can be written uniquely as $n = 2^s t$, where s is a non-negative integer and t is a positive odd integer. For this n, define f(n) = (s + 1, (t + 1)/2). Prove that f is a bijection. (5)

(b) In this part, we show that $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is equinumerous with \mathbb{N} . As in the previous part, one can construct an explicit bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and \mathbb{N} . It is, however, easier to use the Cantor-Schröder-Bernstein theorem.

(i) Propose an explicit injective map $g: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

(5)

(5)

g(a, b, c) =_____

(ii) Propose an explicit injective map $h : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

h(n) =_____

- **2** Let (S, *) be a semigroup and $a \in S$. Recall that the sub-semigroup generated by a is the set $\langle a \rangle = \{a * a * \cdots * a \ (n \text{ times}) \mid n > 0\}$. S is called *cyclic* if $S = \langle a \rangle$ for some $a \in S$. Justify which of the following semigroups is/are cyclic.
 - (a) \mathbb{N} under integer multiplication.

(5)

(b) \mathbb{Z} under integer addition.

(c) \mathbb{Z}_n under addition modulo n (for some arbitrary $n \in \mathbb{N}$).

(5)

(5)