CS21001 Discrete Structures, Autumn 2006

Class test 2: Solutions

Total marks: 30	November 15, 2006 (6:00-7:00pm)	Duration: 1 hour
Roll No:	Name:	

1 (a) In this part, we show that $\mathbb{N} \times \mathbb{N}$ is equinumerous with \mathbb{N} . To that effect, define the map $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ as follows. Any $n \in \mathbb{N}$ can be written uniquely as $n = 2^s t$, where s is a non-negative integer and t is a positive odd integer. For this n, define f(n) = (s + 1, (t + 1)/2). Prove that f is a bijection. (5)

Solution Suppose that f(n) = (s+1, (t+1)/2) and f(n') = (s'+1, (t'+1)/2) are equal, i.e., s+1 = s'+1 and (t+1)/2 = (t'+1)/2, i.e., s = s' and t = t'. But then $n = 2^s t = 2^{s'} t' = n'$. Thus f is injective.

Now take any $(a, b) \in \mathbb{N} \times \mathbb{N}$. Let s = a - 1, t = 2b - 1, and $n = 2^{s}t$. Then s is a non-negative integer and t a positive odd integer, and so $n \in \mathbb{N}$. But then f(n) = (s + 1, (t + 1)/2) = (a, b). That is, f is surjective.

(b) In this part, we show that $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is equinumerous with \mathbb{N} . As in the previous part, one can construct an explicit bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and \mathbb{N} . It is, however, easier to use the Cantor-Schröder-Bernstein theorem.

(i) Propose an explicit injective map $g: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

(5)

(5)

 $g(a, b, c) = \underline{2^a \times 3^b \times 5^c}.$

(Injectivity of *g* follows from the unique factorization property of integers.)

(ii) Propose an explicit injective map $h : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

h(n) = (n, 1, 1).

- **2** Let (S, *) be a semigroup and $a \in S$. Recall that the sub-semigroup generated by a is the set $\langle a \rangle = \{a * a * \cdots * a \ (n \text{ times}) \mid n > 0\}$. S is called *cyclic* if $S = \langle a \rangle$ for some $a \in S$. Justify which of the following semigroups is/are cyclic.
 - (a) \mathbb{N} under integer multiplication.

Solution [No] Every positive integer cannot be written as a power of a fixed (positive) integer. More precisely, suppose $\mathbb{N} = \langle a \rangle$ for some $a \in \mathbb{N}$. But then $2 = a^i$ and $3 = a^j$ for some i, j > 0. But then a divides both 2 and 3, whereas 2, 3 are coprime. Thus a = 1, and consequently $\langle a \rangle = \{1\} \neq \mathbb{N}$, a contradiction.

(b) \mathbb{Z} under integer addition.

Solution [No] Consider $\langle a \rangle$ for some $a \in \mathbb{Z}$. We have $\langle 0 \rangle = \{0\}$. So assume that $a \neq 0$. If a > 0, then $\langle a \rangle$ contains only positive integers. On the other hand, if a < 0, then $\langle a \rangle$ contains only negative integers. In all these cases, $\langle a \rangle$ is a proper subset of \mathbb{Z} .

(c) \mathbb{Z}_n under addition modulo n (for some arbitrary $n \in \mathbb{N}$).

Solution [Yes] \mathbb{Z}_n is generated by (the equivalence class of) 1. Notice that

 $1 \equiv 1 \pmod{n},$ $2 \equiv 1+1 \pmod{n},$ $3 \equiv 1+1+1 \pmod{n},$ \dots $n-1 \equiv 1+1+\dots+1 \pmod{n}, \pmod{n},$ $0 \equiv 1+1+\dots+1 (n-1 \text{ times}) \pmod{n}, \text{ and }$ n n

(5)

(5)

(5)