Class test 1

Total marks: 30	September 12, 2006 (6:00-7:00pm)	Duration: 1 hour

1. Let P(x), Q(x) be predicates involving an integer-valued variable x. Prove or disprove: $\forall x [P(x) \Rightarrow Q(x)]$ is logically equivalent to $\forall x [P(x)] \Rightarrow \forall x [Q(x)].$ (5)

2. The following recursive function takes as argument an array A of integers and its size $n \ge 1$.

```
int f ( int A[], unsigned int n )
{
    if (n == 1) return 0;
    if (n == 2) return A[1];
    return f(A,2) + f(&A[1],n-1) + f(&A[2],n-2);
}
```

(a) Let the element at index *i* in the array *A* be denoted by a_i . Prove by induction on *n* that the function returns $F_0a_0 + F_1a_1 + F_2a_2 + \dots + F_{n-1}a_{n-1}$ for all $n \ge 1$, where F_i is the *i*-th Fibonacci number. (10)

(b) Let T_n denote the running time of the above function on an array of size n. Write a recurrence relation for T_n . Also supply the requisite number of initial conditions. (5)

(c) Solve the above recurrence relation to obtain an explicit formula for T_n . Conclude that $T_n = \Theta(\phi^n)$, where ϕ is the golden ratio. (10)