
CS21001 Discrete Structures, Autumn 2005
Mid-semester examination : Solution

1. Let Tn be a sequence of positive integers defined recursively as:

T0 = 2,

Tn = T 2
n−1 + T 2

n−2 + · · ·+ T 2
1 + T 2

0 for all n > 1.

Prove the following assertions. You may use induction on n, whenever necessary.

(a) Tn = Tn−1(Tn−1 + 1) for all n > 2.

Solution For n > 2 we have:

Tn = T 2
n−1 + T 2

n−2 + T 2
n−3 + · · ·+ T 2

1 + T 2
0 ,

Tn−1 = T 2
n−2 + T 2

n−3 + · · ·+ T 2
1 + T 2

0 ,

so that Tn − Tn−1 = T 2
n−1, i.e., Tn = Tn−1(Tn−1 + 1).

(b) Tn > 22n for all n ∈ N0.

Solution [Induction on n] T0 = 2 = 220

. So assume n > 1 and that Tn−1 > 22n−1

. The recurrence

implies Tn > T 2
n−1 >

(
22n−1

)2

= 22n .

(c) Tn 6 23n for all n ∈ N0.

Solution [Induction on n] T0 = 2 = 230

and T1 = T 2
0 = 4 6 231

. So take n > 2 and assume that
Tn−1 6 23n−1

. But then by Part (a) we have Tn = Tn−1(Tn−1 + 1) 6 Tn−1(T 2
n−1) (since x+ 1 6 x2

for all x > 2), i.e., Tn 6 T 3
n−1 6

(
23n−1

)3

= 23n .

2. A partial order ρ on a set A is called a total order (or a linear order) if for any two different a, b ∈ A either a ρ b
or b ρ a. Justify which of the following relations ρ, σ, τ on N are total orders. (For each of the relations ρ, σ, τ , first
determine whether the relation is a partial order, and if so, whether it is a total order.)

(a) a ρ b if and only if a 6 b+ 1701.

Solution 1 ρ 2 and 2 ρ 1, but 1 6= 2, i.e., ρ is not antisymmetric and so not a partial order too.

(b) a σ b if and only if a > b+ 1701.

Solution Let a σ b and b σ a. This implies that a > b+ 1701 > (a+ 1701) + 1701 = a+ 3402. This
is absurd. So we cannot have both a σ b and b σ a simultaneously, i.e., σ is antisymmetric. If a σ b and
b σ c, we have a > b+ 1701 > (c+ 1701) + 1701 > c+ 1701, i.e., σ is transitive too. Therefore, σ is
a partial order on N. But σ is not a total order on N, since neither (1, 1701) nor (1701, 1) belongs to σ.

(c) a τ b if and only if either u < v or u = v and x 6 y, where a = 2ux and b = 2vy with x and y odd.

Solution Let a = 2ux and b = 2vy (with x, y odd) satisfy a τ b and b τ a. We cannot have u < v
and v 6 u simultaneously. So u = v. But then x 6 y and y 6 x, implying x = y, i.e., a = b. So τ
is anti-symmetric. Now suppose a τ b and b τ c, where a = 2ux, b = 2vy and c = 2wz with x, y, z
odd. We have u 6 v and v 6 w, i.e., u 6 w. If u < w, then a τ c. On the other hand, u = w implies
u = v = w. But then x 6 y and y 6 z, so that x 6 z, i.e., a τ c. So τ is a partial order. Finally, let
a = 2ux and b = 2vy be two different integers. We then have either u 6= v or x 6= y (or both). If u < v,
then a τ b. If u > v, then b τ a. If u = v, then a τ b or b τ a according as whether x < y or x > y.
Thus, τ is a total order.

3. (a) Prove that the set of all subsets of N is uncountable.

Solution No set is in bijective correspondence with its power set.

1



(b) Prove that the set of all finite subsets of N is countable.

Solution LetA denote the set of all finite subsets ofN. We writeA as the disjoint unionA =
⋃
n∈N0

An,
where An comprises subsets of N of size n. |A0| = 1. For n > 1 the set An can be identified with an
(infinite) subset of Nn and so is countable. Since A is the union of countably many finite or countable
sets, it is countable.

(c) Prove that the set of all infinite subsets of N is uncountable.

Solution Let B denote the set of all infinite subsets of N. P(N) is the (disjoint) union of A (defined in
Part (b)) and B. If B is countable, then P(N) would be countable too. So B is uncountable.

4. There are 8 red balls, 12 blue balls, 16 green balls and 20 yellow balls in a bag.

(a) What is the minimum number of balls you must take out from the bag, so that you are guaranteed to get 6 balls
of the same color?

Solution The color can be any one of red, blue, green and yellow. By the pigeon-hole principle,
choosing k balls from the bag ensures one color to be repeated at least dk/4e times. The smallest k for
which dk/4e > 6 is 21. On the other hand, drawing 20 balls does not provide the desired guarantee,
since we may have 5 balls of each color.

(b) What is the minimum number of balls you must take out from the bag, so that you are guaranteed to get 10 balls
of the same color?

Solution We cannot draw 10 red balls, since there are only 8 of them. Since 28 the smallest value of k
for which dk/3e > 10, we must draw 28 balls of colors blue, green and yellow in order to have a color
repeated at least 10 times. But the drawing may give a number between 0 to 8 of the red balls. These
are useless for our goal, but we must remain prepared for drawing them. Thus the required minimum
number of balls in this case is 28 + 8 = 36.

(c) What is the minimum number of balls you must take out from the bag, so that you are guaranteed to get at least
one ball of each color?

Solution The desired number is 1 + 12 + 16 + 20 = 49. Drawing 48 balls may give a collection of only
the blue, green and yellow balls.

5. Let An = {1, 2, 3, . . . , n}. Recall that the total number of partitions of An is the n-th Bell number Bn. Let B′n denote
the total number of partitions of An for which any pair of consecutive integers (i and i + 1) does not belong to the
same subset of a partition. Prove that B ′n = Bn−1 for all n > 1.

Solution Call a partition P of An special, if no subset in P contains two consecutive integers. Denote
by S′(n, r) the number of special partitions of An containing exactly r non-empty subsets. First I prove
by induction on n that S ′(n, r) = S(n − 1, r − 1) for all n > 1 and for all r in the range 1 6 r 6 n.
For n = 1, we have S′(n, 1) = 1 = S(0, 0) and the induction basis is proved. So take n > 2 and
1 6 r 6 n, and assume that the claim holds for S ′(n − 1, r′) for all legitimate indices r′. Consider
a special partition of An−1 into r − 1 non-empty subsets. Adding {n} as a singleton gives a special
partition of An. Then consider a special partition of An−1 into r non-empty subsets. Adding n to any
one of the r − 1 subsets not containing n − 1 yields a special partition of An. All special partitions of
An into r non-empty subsets can be generated in this way. Consequently,

S′(n, r) = S′(n− 1, r − 1) + (r − 1)S′(n− 1, r)

= S(n− 2, r − 2) + (r − 1)S(n− 2, r − 1) [by the induction hypothesis]
= S(n− 1, r − 1) [by the recurrence for Stirling numbers],

and the inductive step is established. For n > 1 it then follows that

B′n = S′(n, 0) +
n∑

r=1

S′(n, r) =
n∑

r=1

S′(n, r) [since S′(n, 0) = 0]

=

n∑

r=1

S(n− 1, r − 1) =

n−1∑

r−1=0

S(n− 1, r − 1) = Bn−1.
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6. Solve the following recurrence relation to find an explicit formula for the sequence Tn:

T0 = 1,

T1 = 2,

T2 = 28,

Tn = 5Tn−1 − 3Tn−2 − 9Tn−3 for all n > 3.

Solution The characteristic equations is

χ(X) = X3 − 5X2 + 3X + 9 = X3 − 3X2 − 2X2 + 6X − 3X + 9

= (X − 3)(X2 − 2X − 3) = (X − 3)(X + 1)(X − 3) = (X + 1)(X − 3)2 = 0.

Therefore, a general solution of the given recurrence is:

Tn = c(−1)n + c′3n + c′′n3n.

Plugging in the initial values gives:

c+ c′ = 1,

−c+ 3c′ + 3c′′ = 2,

c+ 9c′ + 18c′′ = 28.

The solution of this system is c = 25/16, c′ = −9/16 and c′′ = 7/4. Thus we have:

Tn =
25

16
(−1)n +

(
7

4
n− 9

16

)
3n for all n ∈ N0.
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