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Chapter 1 : A primer on ideals

In these notes, we concentrate only on commutative rings often without specific mention.

1.1 Definition Let R be a ring (commutative). A subset a ⊆ R is called an ideal of R if:

(i) a is a subgroup of (R,+), and
(ii) a is closed under multiplication by elements of R, i.e., ra ∈ a for all r ∈ R and a ∈ a.

1.2 Example

(1) The set {0} is the trivial subgroup of (R,+). Moreover, r · 0 = 0 for all r ∈ R. Thus the set {0} is an
ideal of R and is called the zero ideal, denoted by 0.

(2) On the other extreme, the entire setR is clearly an ideal ofR and is called the unit ideal of R. The name
is attributed to the following proposition.

1.3 Proposition Let a be an ideal of R. Then a is the unit ideal if and only if a contains a unit of R.

Proof [Only if] If a = R, then 1 ∈ a.

[If] Let a contain a unit u. There exists v ∈ R such that uv = 1. By the second property of ideals, we
then have 1 ∈ a. Moreover, for any r ∈ R we have r = r · 1 ∈ a again by the second property of ideals.
Therefore, R ⊆ a. J

1.4 Corollary The only ideals of a field F are the zero ideal and the unit ideal.

Proof Let a be a non-zero ideal of F , i.e., let a contain a non-zero element a. Since F is a field, a is a unit
of F , i.e., a is the unit ideal. J

(3) Take R = Z and n ∈ Z. All integer multiples of n form an ideal of Z denoted by nZ or 〈n〉.

〈n〉 = nZ = {na | a ∈ Z}.

We call 〈n〉 the principal ideal generated by n. We will later see that every ideal of Z is a principal ideal.

(4) Let us generalize the concept of Part (3). Let R be any ring (of course, commutative) and a ∈ R. Then
the ideal generated by a is defined as

Ra = 〈a〉 = {ra | r ∈ R}.

More generally, let a1, a2, . . . , an ∈ R. The set of all finite linear combinations of a1, a2, . . . , an is an ideal
of R.

Ra1 +Ra2 + · · ·+Ran = 〈a1, a2, . . . , an〉 = {r1a1 + r2a2 + · · ·+ rnan | r1, r2, . . . , rn ∈ R}.

The notation 〈· · ·〉 is ambiguous, since it does not mention the ring in which ideals are considered. We can
use this notation in case the ring R is clear from the context.
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For R = Z the ideal 〈4, 6〉 = {4a + 6b | a, b ∈ Z} is also equal to 〈2〉 = {2a | a ∈ Z}. As mentioned
earlier, every ideal of Z is a principal ideal. It can be proved that if a1, a2, . . . , an ∈ Z are not all zero, then
〈a1, a2, . . . , an〉 is the principal ideal generated by gcd(a1, a2, . . . , an).

All ideals need not be principal. Consider R = Z[x] and a = 〈x, 2〉. Then a consists of polynomials of the
form xf(x) + 2g(x) with f(x), g(x) ∈ Z[x]. It is easy to see the a consists precisely of those polynomials
of Z[x] in which the constant term is even. This ideal is not principal. In order to prove this, let us assume
otherwise, i.e., a = 〈h(x)〉 for some h(x) ∈ Z[x]. Since x and 2 belong to a, h(x) divides both x and 2 and
so must be equal to ±1. But then h(x) is a unit and so we must have a = Z[x], a contradiction to the fact
that a does not contain polynomials with odd constant terms.

(5) Let R = Zn and a ∈ Zn. The principal ideal 〈a〉 of Zn is equal to Zn if and only if gcd(a, n) = 1. As a
specific example, take n = 10. If a = 2, then the distinct multiples of a are {0, 2, 4, 6, 8}. This is a proper
ideal of Z10. On the other hand, for a = 3 we have 〈3〉 = {0, 3, 6, 9, 2, 5, 8, 1, 4, 7} = Z10.

1.5 Definition Let R be a ring. A subset S ⊆ R is called a subring of R is S is a ring under the binary
operations of R.

1.6 Example

(1) Z is a subring of Q,R,C. Q is a subring (also a subfield) of R and C. Finally, R is a subfield of C.

(2) Every ring R is canonically embedded in the polynomial ring R[x] (consider the constant polynomials).
Thus R is a subring of R[x].

Ideals and subrings are different concepts. A subring, being a ring, must contain the multiplicative identity,
whereas the only ideal containing the multiplicative identity is the unit ideal. On the other hand, it suffices
for a subring to be closed under multiplication by elements of the subring, whereas an ideal must be closed
under multiplication by elements of the entire ring. For example, Z is not an ideal of Q, since 2× 1

3 /∈ Z.

1.7 Definition An integral domain in which all ideals are principal is called a principal ideal domain or a
PID in short.

1.8 Proposition Z is a PID.

Proof Let a be an ideal of Z. If a = 0, then it is the principal ideal generated by the element 0. So assume
that a 6= 0, i.e., a contains non-zero integers. Since a ∈ a if and only if−a ∈ a (a is a group under addition),
a contains positive integers. Let a be the smallest positive integer contained in a. I will show that a = 〈a〉.
Since a is closed under multiplication by integers and since a ∈ a, it is evident that 〈a〉 ⊆ a. For proving
the converse inclusion, take b ∈ a. Since a 6= 0, we can apply the Euclidean division algorithm to obtain
b = qa + r with q, r ∈ Z and 0 6 r < a. Since a ∈ a, qa ∈ a too (property (ii)). Moreover, since a is
an additive group and b ∈ a, r = b − qa ∈ a. Now a has been chosen to be the smallest positive integer
contained in a. So r cannot be positive, i.e., r = 0. But then b = qa ∈ 〈a〉, i.e., a ⊆ 〈a〉. J

The crux of the above proof lies in our ability to apply Euclidean division in R. An analogous proof for any
ring R in which Euclidean division holds lets us conclude the general result:

1.9 Proposition Any ED (Euclidean domain) is a PID. In particular, Z and F [x] (F a field) are PIDs. J

Z[x] is not a PID, since 〈x, 2〉 is not principal. That is not unexpected; Z is not a field anyway.
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Ideals are instrumental for the construction of quotient rings. In this sense ideals play the same role as do
normal subgroups in connection with groups.

Let R be a ring and a an ideal of R. Since (R,+) is Abelian, a is a normal subgroup of (R,+). The set

R/a = {r + a | r ∈ R}

of cosets of R with respect to a is, therefore, an Abelian group under addition defined as

(r + a) + (s+ a) = (r + s) + a.

We plan to define a multiplication in R/a in the following way:

(r + a)(s+ a) = (rs) + a.

It is an easy check that this multiplication is well-defined, i.e., independent of the choice of the
representatives of the equivalence classes r + a and s + a. Under these addition and multiplication of
cosets, R/a becomes a ring called the quotient ring of R with respect to a. The coset 1 + a acts as the
multiplicative identity of R/a. Since R is commutative, R/a is commutative too.

1.10 Example

(1) Let a = 0. Then each coset of R is a singleton. Thus the quotient ring R/a is essentially the same as
the ring R.

(2) Next consider the unit ideal a = R. Now there is only one coset, namely R itself, and so the quotient
ring R/a is the zero ring. This is expected, since the additive identity 0 +R is the same as the multiplicative
identity 1 +R.

(3) Take R = Z and a = 〈n〉 for some n ∈ N. The quotient ring Z/〈n〉 is essentially the same as the ring
Zn under addition and multiplication modulo n.

(4) Let F be a field and take R = F [x]. Choose a non-constant polynomial f(x) ∈ F [x] and consider the
principal ideal a of F [x] generated by f(x). The quotient ring S = F [x]/〈f(x)〉 deserves specific mention
in this regard. I claim that S can be represented as the set:

S = {a(x) ∈ F [x] | deg a(x) < deg f(x)}.

To see why, take any g(x) ∈ F [x]. Euclidean division of g(x) by f(x) yields g(x) = q(x)f(x) + r(x) with
deg r(x) < deg f(x). Since q(x)f(x) ∈ a, it follows that g(x) + a = r(x) + a. Thus every coset of F [x]
has a representative of degree less than deg f(x).

Furthermore, different representatives of degrees less than deg f(x) belong to different cosets. Consider
a(x), b(x) ∈ S with deg a < deg f and deg b < deg f . If a(x) + a = b(x) + a, we have a(x)− b(x) ∈ a,
i.e., a(x)− b(x) is a multiple of f(x). But a(x)− b(x) is of degree strictly less than deg f , and F is a field.
Thus we must have a(x) = b(x).

It is easy to check that the arithmetic of the quotient ring S is the arithmetic of F [x] modulo the polynomial
f(x). The passage from F [x] to F [x]/〈f(x)〉 is perfectly analogous to the passage from Z to Zn = Z/〈n〉.

1.11 Proposition Let F be a field and f(x) a non-constant polynomial in F [x]. The quotient ring
S = F [x]/〈f(x)〉 is a field if and only if f(x) is irreducible in F [x].

Proof [If] Since F is commutative, S is also commutative. It suffices only to show that every non-zero
element a(x)+a ∈ S has an inverse in S. We can choose the representative a(x) to be a non-zero polynomial
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of degree less than deg f . Since f is irreducible, gcd(a(x), f(x)) = 1, and so by the extended gcd theorem
there exist polynomials u(x), v(x) ∈ F [x] such that u(x)a(x) + v(x)f(x) = 1. Since v(x)f(x) ∈ 〈f(x)〉,
we have (u(x) + 〈f(x)〉)(a(x) + 〈f(x)〉) = 1 + 〈f(x)〉, i.e., u(x) + 〈f(x)〉 is the inverse of a(x) + 〈f(x)〉.
[Only if] Let f(x) be reducible, i.e., f(x) = g(x)h(x) for some non-constant polynomials g(x), h(x) ∈
F [x]. The degrees of g and h are less than deg f , and so g(x) + 〈f(x)〉 and h(x) + 〈f(x)〉 are nonzero
elements of S. Moreover, (g(x) + 〈f(x)〉)(h(x) + 〈f(x)〉) = f(x) + 〈f(x)〉 = 0 + 〈f(x)〉, i.e., S is not
even an integral domain, let alone a field. J

Irreducible polynomials play the same role for the ring F [x] as prime numbers do in connection with the
ring Z.

1.12 Example

Take F = R and the irreducible polynomial f(x) = x2 + 1. Look at the field S = R[x]/〈x2 + 1〉. The
elements of S can be represented by polynomials with real coefficients and of degrees< 2, i.e., as a+bx for
a, b ∈ R. Addition of two such polynomials is simple: (a+bx)+(c+dx) = (a+c)+(b+d)x. Multiplication
in S can be carried out as: (a+bx)(c+dx) = ac+(ad+bc)x+bdx2 = ac+(ad+bc)x−bd+bd(x2 +1) =
(ac − bd) + (ad + bc)x (modulo x2 + 1). That’s quite familiar, eh? Multiplication of complex numbers!
You are used to write i instead of x. In fact, since x2 + 1 = 0 in S, x is indeed a square root of −1. To sum
up, the field S is the algebraic description of the field C of complex numbers.

Irreducible polynomials thus have the capability of defining new fields from existing ones. A special class
of fields finds immense applications in several engineering disciplines including error correcting coding and
cryptography.

1.13 Definition A field F for which the size |F | of the set F is finite is called a finite field or a Galois field.

We have seen Zn is a field if and only if n is a prime. These are our first and easiest examples of finite fields.
The technique of forming quotients of polynomial rings leads us to the algebraic description of other finite
fields.

Start with the polynomial ring F [x] = Zp[x], p a prime, and take n ∈ N, n > 2. It is a deep result that for
every prime p and every n ∈ N, there exists an irreducible polynomial in Zp[x] of degree n. Let f(x) be
such a polynomial. We have the quotient ring

K = Zp[x]/〈f(x)〉 = {a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 | a0, a1, . . . , an−1 ∈ Zp}

which is a field, since f(x) is irreducible. We can choose each coefficient ai in p different ways. Also for
different choices of a0, a1, . . . , an−1, we get different elements of K. To sum up, K is a field of size pn,
i.e., K is again a finite field. The arithmetic of K is the arithmetic of the polynomial ring Zp[x] modulo the
irreducible polynomial f(x).

1.14 Example

(1) Take p = 5 and n = 2. Since 02 = 0, 12 = 1, 22 = 4, 32 = 4 and 42 = 1 in Z5, the polynomial
f(x) = x2 + 2 is irreducible in Z5[x]. Thus the quotient ring

K = Z5[x]/〈x2 + 2〉 = {a+ bx | a, b ∈ Z5}

is a field with 52 = 25 elements. Addition inK is simple: (2+3x)+(4+x) = (2+4)+(3+1)x = 1+4x. For
multiplication, we first multiply the operands as polynomials in Z5[x]. Then we reduce the product modulo
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x2 +2. For instance, (2+3x)(4+x) = 3+2x+2x+3x2 = 3+4x+3x2 = 3+4x+3(x2 +2)−3×2 =
3 + 4x− 1 = 2 + 4x.

(2) The polynomial x3 + x+ 1 is irreducible in Z2[x] and so

K = Z2[x]/〈x3 + x+ 1〉

is a finite field of size 23 = 8. Its elements are 0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1. The addition
and multiplication tables for K are given below.

0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
1 1 0 x+ 1 x x2 + 1 x2 x2 + x+ 1 x2 + x
x x x+ 1 0 1 x2 + x x2 + x+ 1 x2 x2 + 1

x+ 1 x+ 1 x 1 0 x2 + x+ 1 x2 + x x2 + 1 x2

x2 x2 x2 + 1 x2 + x x2 + x+ 1 0 1 x x+ 1
x2 + 1 x2 + 1 x2 x2 + x+ 1 x2 + x 1 0 x+ 1 x
x2 + x x2 + x x2 + x+ 1 x2 x2 + 1 x x+ 1 0 1

x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x2 x+ 1 x 1 0
Addition table

0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 0 0 0 0 0 0 0
1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1

x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x
x2 0 x2 x+ 1 x2 + x+ 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x
x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + x x2 x+ 1
Multiplication table

(3) The cryptographic algorithm AES (Advanced Encryption Standard) uses the finite field of 28 = 256
elements defined as Z2[x]/〈x8 + x4 + x3 + x+ 1〉.

Finite fields possess many interesting algebraic properties. A detailed discussion of these properties is well
beyond the scope of this introductory course. Let me mention some salient points without proof.

For every prime p and every n ∈ N there exist finite fields of size pn. Conversely, every finite field must be
of size pn for some prime p and some n ∈ N. Moreover, any two finite fields of the same size are essentially
the same (isomorphic). This enables us to talk about the (instead of a) finite field of size pn and denote this
field by the special symbols Fpn and GF(pn).

The multiplicative group F∗q = Fq \ {0} of every finite field Fq is cyclic. A generator of F∗q is called a
primitive element of Fq.

1.15 Example

(1) First consider the prime field F17 = Z17. The size of F∗17 is 16. So every element of F∗17 is of order 2i

for some i ∈ {0, 1, 2, 3, 4}. First consider the element 2. We have 21 = 2, 22 = 4, 24 = 16 and 28 = 1 in
F17, i.e., 2 is not a primitive element of F17. On the other hand, 31 = 3, 32 = 9, 34 = 13, 38 = 16, 316 = 1
modulo 17, i.e., 3 is a primitive element of F17.

Dept. of Computer Science & Engg Indian Institute of Technology, Kharagpur, India



Chapter 1: A primer on ideals Page 6 of 6

(2) The size of F∗8 is 7 (a prime), and so every element of F∗8 (other than 1) is a primitive element of F8. For
example, the powers of x under the above representation of F8 are:

i 0 1 2 3 4 5 6 7

xi 1 x x2 x+ 1 x2 + x x2 + x+ 1 x2 + 1 1

(3) The order of F∗25 is 24. So F∗25 consists of elements of orders 1, 2, 3, 4, 6, 8, 12, 24. Consider the
representation F25 = Z5[x]/〈x2 + 2〉. The element x in this representation satisfies x1 = x, x2 = 3, x4 = 4
and x8 = 1, i.e., ordx = 8, i.e., x is not a primitive element of F25. Now consider the element x + 1.
We have (x + 1)1 = x + 1, (x + 1)2 = 2x + 4, (x + 1)3 = x, (x + 1)4 = x + 3, (x + 1)6 = x2 + 2,
(x+ 1)8 = x+ 2, (x+ 1)12 = 4 and (x+ 1)24 = 1. That is, x+ 1 is a primitive element of F25.
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