Exercise set 5

- **1.** Let R be a ring. Prove that:
 - (a) $0 \cdot x = 0$ for all $x \in R$.
 - (b) x(-y) = (-x)y = -(xy) and (-x)(-y) = xy for all $x, y \in R$.
 - (c) R is commutative if and only if $(x + y)^2 = x^2 + 2xy + y^2$ for all $x, y \in R$.
 - (d) R is commutative if and only if $(x + y)(x y) = x^2 y^2$ for all $x, y \in R$.
- **2.** Let R be a commutative ring. An element $a \in R$ is said to be *nilpotent* if $a^n = 0$ for some $n \in \mathbb{N}$. Prove that if a and b are nilpotent, then so also is a + b. Conclude that the set of all nilpotent elements of R is an ideal of R. This ideal is called the *nilradical* of R.
- 3. The characteristic of a ring R is defined to be the smallest positive integer n for which $1 + 1 + \cdots + n$ 1 (n times) = 0. In this case we say char R = n. If no such n exists, we say that char R = 0.
 - (a) What are the characteristics of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n$?
 - (b) Prove that char $R = \operatorname{char} R[x]$.
 - (c) Let R be an integral domain of positive characteristic n. Prove that n is a prime.
- **4.** Let R be an integral domain of prime characteristic p and let $a, b \in R$. Prove that:
 - (a) The binomial coefficient $\binom{p}{r}$ is divisible by p for $1 \leq r \leq p-1$.
 - **(b)** $(a+b)^{p^n} = a^{p^n} + b^{p^n}$ for all $n \in \mathbb{N}_0$.
- 5. Let $f(x) = x^4 + 3x^3 + x + 3$ and $q(x) = x^3 + 2x^2 + 2x + 1$.
 - (a) Compute gcd(f, g) in $\mathbb{Z}[x]$. (c) Compute the extended gcd of f, g in $\mathbb{Z}[x]$.
 - (b) Compute gcd(f, g) in $\mathbb{Z}_7[x]$. (d) Compute the extended gcd of f, g in $\mathbb{Z}_7[x]$.
- 6. Find the complete factorization of the following polynomials:
 - (a) $x^4 + x^2 + 1$ in $\mathbb{Z}[x]$. (b) $x^4 + x^2 + 1$ in $\mathbb{C}[x]$. *
 - (c) $x^4 + 3x^3 + 2x + 4$ in $\mathbb{Z}_5[x]$.

(d)
$$x^4 + 16 \text{ in } \mathbb{Z}_{17}[x].$$

(e) $x^{22} + 22 \text{ in } \mathbb{Z}_{23}[x].$

- 7. Let F be an infinite field and $f(x), g(x) \in F[x]$. If f(a) = g(a) for infinitely many elements $a \in F$, prove that f(x) = g(x).
- 8. (a) Let R be an integral domain. Define a relation \sim on $R \times (R \setminus \{0\})$ as $(a, b) \sim (c, d)$ if and only if ad = bc. Prove that \sim is an equivalence relation.

(b) The equivalence class of (a, b) is denoted by a/b and the set of all equivalence classes by Q(R). Define addition and multiplication in Q(R) as (a/b) + (c/d) = (ad + bc)/(bd) and (a/b)(c/d) = (ac)/(bd). Prove that these operations are well-defined, i.e., independent of the choice of the representatives of the classes.

(c) Prove that Q(R) is a field under these operations. We call Q(R) the quotient field of R. We have $Q(\mathbb{Z}) = \mathbb{Q}$ and Q(F[x]) = F(x), where F is a field and F(x) is the set of all rational functions over F.

- **9.** Let $R = \{a + ib \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers. Take $a + ib, c + id \in R$ with $c + id \neq 0$.
- *(a) Prove that there exist $p + iq, r + is \in R$ such that a + ib = (p + iq)(c + id) + (r + is) with $0 \le |r+is| \le \frac{1}{\sqrt{2}}|c+id|$. (Hint: First express $\frac{a+ib}{c+id} = x + iy$, where x, y are rationals.)

(b) Conclude that R is a Euclidean domain. Demonstrate how you can compute the gcd of two elements (not both zero) in R.

10. Let R be a ED, $a, b \in R$ (not both zero), and d a gcd of a and b. Prove that $\langle a \rangle + \langle b \rangle = \langle d \rangle$.

- **11.** Let R be a commutative ring. A non-zero non-unit $p \in R$ is called *prime* if $p \mid (ab)$ in R (with $a, b \in R$) implies $p \mid a$ or $p \mid b$. A non-zero non-unit $x \in R$ is called *irreducible* if x = uv with $u, v \in R$ implies either u or v is a unit. Prove that every prime element is irreducible.
- 12. Let $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$. Prove that R is a commutative ring under complex addition and multiplication. Prove that the elements $2, 3, 1 + \sqrt{-5}, 1 \sqrt{-5}$ are all irreducible in R. Use the fact $2 \times 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ to conclude that every irreducible element is not necessarily prime. (Note: R is an example of a ring in which unique factorization does not hold.)
- **13.** Let R be a ring and $\mathfrak{a}, \mathfrak{b}$ ideals of R.
 - (a) Prove that $\mathfrak{a} \cap \mathfrak{b}$ is an ideal of R.
 - (b) Prove that $\mathfrak{a} + \mathfrak{b} = \{a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}$ is an ideal of R.
 - (c) Demonstrate by an example that $\mathfrak{a} \cup \mathfrak{b}$ is not necessarily an ideal of *R*.
 - * (d) Demonstrate by an example that $\mathfrak{ab} = \{ab \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}$ is not necessarily an ideal of R.
- 14. Let R be a commutative ring. An ideal \mathfrak{m} of R is called *maximal* if $\mathfrak{m} \subseteq \mathfrak{a} \subseteq R$ with \mathfrak{a} an ideal implies $\mathfrak{a} = \mathfrak{m}$ or $\mathfrak{a} = R$. In other words, there does not exist a proper ideal strictly containing a maximal ideal.
 - (a) Let $n \in \mathbb{N}$. Prove that the ideal $\langle n \rangle$ is maximal in \mathbb{Z} if and only if n is a prime.
 - (b) Let F be a field and $f(x) \in F[x]$ a non-constant polynomial. Prove that the ideal $\langle f(x) \rangle$ is maximal in F[x] if and only if f(x) is irreducible in F[x].
 - * (c) Let a be an ideal of R. Prove that a is maximal in R if and only if R/a is a field.
- **15.** Let R, S be rings. A function $f : R \to S$ is called a *homomorphism of rings* if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$ and if $f(1_R) = 1_S$. A ring homomorphism is called an *isomorphism* if f has an inverse $g : S \to R$ such that g is also a ring homomorphism.
 - (a) Prove that f is an isomorphism if and only if f is bijective as a function.
 - (b) Let $n \in \mathbb{N}$. Demonstrate that the function $\mathbb{Z} \to \mathbb{Z}_n$ that maps a to a rem n is a ring homomorphism.
 - (c) Prove that the only homomorphism $\mathbb{Z} \to \mathbb{Z}$ is the identity map.
 - * (d) Let F, K be fields and $f: F \to K$ a homomorphism. Prove that f is injective.
 - * (e) [Isomorphism theorem] Let $f : R \to S$ be a ring homomorphism. The kernel of f is defined as Ker $f = \{a \in R \mid f(a) = 0_S\}$. The image of f is defined as Im $f = \{f(a) \mid a \in R\}$. Prove that Ker f is an ideal in R, Im f is a subring of S, and R/ Ker f is isomorphic to Im f.
- * 16. Prove that every element in \mathbb{Z}_p , p prime, has a p-th root in \mathbb{Z}_p , i.e., for every $a \in \mathbb{Z}_p$ there exists $x \in \mathbb{Z}_p$ such that $x^p = a$. (Hint: Fermat's little theorem.)
 - 17. Let F be a field. We can identify every integer n with an element of F in the following way. The integer 0 is identified with the additive identity of F. For n > 0 we identify the integer n with $1 + 1 + \cdots + 1$ (n times), where 1 is the multiplicative identity of F. Finally, if n = -m < 0, we identify the integer n with the additive inverse of m in F.

Let $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$ be a polynomial in F[x]. The *formal derivative* of f(x) is defined to be the polynomial $f'(x) = da_d x^{d-1} + (d-1)a_{d-1} x^{d-2} + \dots + a_1 \in F[x]$.

- (a) Prove that (f+g)' = f' + g' and (fg)' = f'g + fg' for all $f, g \in F[x]$.
- (b) Let char F = 0. Show that f'(x) = 0 if and only if f(x) is a constant polynomial.

** (c) Let $F = \mathbb{Z}_p$ with p prime. Prove that f'(x) = 0 if and only if $f(x) = g(x)^p$ for some $g(x) \in \mathbb{Z}_p[x]$.