Exercise set 4

- 1. Which of the following are semigroups? Monoids? Groups?
 - (a) \mathbb{C} under addition of complex numbers.
 - (b) \mathbb{C} under multiplication of complex numbers.
 - (c) \mathbb{C}^* under addition of complex numbers, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.
 - (d) \mathbb{C}^* under multiplication of complex numbers.
 - (e) The set of all (univariate) polynomials with integer coefficients under polynomial addition.
 - (f) The set of all polynomials with rational coefficients under polynomial addition.
 - (g) The set of all non-zero polynomials with integer coefficients under polynomial multiplication.
 - (h) The set of all non-zero polynomials with rational coefficients under polynomial multiplication.
 - (i) The set of all non-constant polynomials with integer coefficients under polynomial addition.
 - (j) The set of all non-constant polynomials with rational coefficients under polynomial multiplication.
 - (k) The set $\{1, -1, i, -i\}$ under multiplication, where i is a complex square root of unity.
 - (1) $\{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ under addition. The same set under multiplication.
 - (m) $\{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ under addition. The same set under multiplication.
 - (n) $\{a + bi \mid a, b \in \mathbb{Z}\}$ under addition. The same set under multiplication.
 - (o) $\{a + bi \mid a, b \in \mathbb{Q}\}$ under addition. The same set under multiplication.
 - (p) \mathbb{R} under the operation * defined as x * y = xy + x + y.
- **2.** Let G be a multiplicative group and $a, b \in G$. Prove that:
 - (a) $(ab)^{-1} = b^{-1}a^{-1}$.
 - **(b)** $(a^{-1})^{-1} = a.$
- **3.** Prove that:
 - (a) Any group of order 4 is Abelian.
 - (b) Any cyclic group is Abelian.
 - (c) Any group of prime order is cyclic.
- * (d) Any Abelian group of square-free order is cyclic.
- **4.** Let G be a group, $a, b \in G$, $m = \operatorname{ord} a$, $n = \operatorname{ord} b$, and $k \in \mathbb{Z}$. Assume that $m, n < \infty$.
 - (a) Prove or disprove: $\operatorname{ord}(ab) = mn$.
 - (b) Prove or disprove: If gcd(m, n) = 1, then ord(ab) = mn.
 - (c) Prove or disprove: If G is Abelian and gcd(m, n) = 1, then ord(ab) = mn.
 - (d) Prove that $\operatorname{ord}(a^k) = m/\operatorname{gcd}(m,k)$.
 - (e) Conclude that if G is a finite cyclic group, then G has exactly $\phi(r)$ generators, where r is the order of C and ϕ is Eular's totiant function

G and ϕ is Euler's totient function.

5. Let G be a multiplicative group and $a \in G$.

(a) Define the *centralizer* of a as $C(a) = \{b \in G \mid ab = ba\}$. Prove that C(a) is a subgroup of G. What is C(a) if G is Abelian?

(b) Two elements $a, b \in G$ are said to be *conjugate* (to one another), denoted $a \sim b$, if $b = xax^{-1}$ for some $x \in G$. Prove that conjugacy is an equivalence relation on G.

- (c) Prove that if $a \sim b$, then ord a = ord b.
- 6. Let $f: G_1 \to G_2$ be a group homomorphism, where G_1, G_2 are multiplicative groups with identity elements e_1, e_2 . Further let H_1 be a subgroup of G_1 , and H_2 a subgroup of G_2 . Prove the following assertions:
 - (a) $f(e_1) = e_2$.
 - (b) $f(a^{-1}) = f(a)^{-1}$ for all $a \in G_1$.

- (c) $f(H_1) = \{a_2 \mid a_2 = f(a_1) \text{ for some } a_1 \in H_1\}$ is a subgroup of G_2 .
- (d) $f^{-1}(H_2) = \{a_1 \mid f(a_1) \in H_2\}$ is a subgroup of G_1 .
- (e) Let $a_2 = f(a_1)$ for some $a_1 \in G_1$. Prove or disprove: ord $a_1 = \text{ord } a_2$.
- (f) Repeat Part (e) assuming that f is an isomorphism.
- (g) $H_1 \times H_2$ is a subgroup of $G_1 \times G_2$.
- 7. Let G be a multiplicative group and H, K subgroups of G. Prove that:
 - (a) $H \cap K$ is a subgroup of G.
 - (b) $H \cup K$ need not be a subgroup of G.
 - (c) $HK = \{hk \mid h \in H, k \in K\}$ need not be a subgroup of G.
 - (d) HK is a subgroup of G if and only if HK = KH.
 - (e) If G is finite and gcd(|H|, |K|) = 1, then $H \cap K = \{e\}$.
- 8. Let G be a multiplicative group and X a subset of G.

(a) Prove that $\langle X \rangle = \{x_1 x_2 \dots x_n \mid n \in \mathbb{N}_0 \text{ and either } x_i \in X \text{ or } x_i^{-1} \in X \text{ for each } i = 1, 2, \dots, n\}$ is a subgroup of G.

- (b) Prove that $\langle X \rangle$ is the smallest subgroup of G that contains X.
- * (c) We say that G is generated by X and that X is a generator of G, if $G = \langle X \rangle$. In that case, X is called a *minimal* generating set of G, if $X \setminus \{x\}$ does not generate G for all $x \in X$. Prove that for all $n \in \mathbb{N}$ there exists a minimal generating set of $(\mathbb{Z}, +)$ with exactly n elements.
- **9.** Let $n \in \mathbb{N}$ and $n\mathbb{Z}$ denote the set of all integer multiples of n. Prove that $n\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$. What is the index $[\mathbb{Z} : n\mathbb{Z}]$?
- **10.** Let H a subgroup of index 2 of a multiplicative group G. Prove that aH = Ha for all $a \in G$.
- **11.** Let G be a multiplicative group.

(a) Define a relation \sim on G as $a \sim b$ if and only if $a^{-1}b \in H$. Prove that \sim is an equivalence relation on G and that the equivalence classes of G with respect to \sim are the left cosets of G.

(b) Define a relation \sim' on G as $a \sim' b$ if and only if $ab^{-1} \in H$. Prove that \sim' is an equivalence relation on G and that the equivalence classes of G with respect to \sim' are the right cosets of G.

- 12. Let G be a finite cyclic group of order n and let s, t be divisors of n. Let H and K be subgroups of G of respective orders s, t. What is the order of $H \cap K$?
- **13.** Prove that the only automorphisms of $(\mathbb{Z}, +)$ are the identity map and the map that sends $a \mapsto -a$.
- 14. Let G be a group and Aut G denote the set of automorphisms of G.
 - (a) Prove that Aut G is a group under composition of functions.
 - ****** (b) Prove that the automorphism group of $(\mathbb{Z}_n, +)$ is isomorphic to (\mathbb{Z}_n^*, \times) .
- **15.** Let G be a finite cyclic group of order m, r a divisor of m, H a subgroup of G of order r, and $a \in G$. Prove that $a \in H$ if and only if $a^r = e$, where e is the identity element of G. Demonstrate by an example that this result need not hold if G is not cyclic.
- **16.** Let G_1, G_2, \ldots, G_n be groups and $G = G_1 \times G_2 \times \cdots \times G_n$.
 - (a) Prove that G is a group under componentwise group operations.
 - * (b) Let each G_i be finite of order m_i . Establish that G is cyclic if and only if each G_i is cyclic and $gcd(m_i, m_j) = 1$ for $i \neq j$.

Dr. Abhijit Das, Dept. of Computer Science & Engineering, IIT Kharagpur, India