
CS21001 Discrete Structures, Autumn 2005
Exercise set 3

1. Let n,m, r ∈ N and x, y ∈ R. Prove that:

(a) bnm/rc > n bm/rc and dnm/re 6 n dm/re.
(b)

⌊
n
2

⌋− ⌊−n
2

⌋
=
⌈
n
2

⌉− ⌈−n
2

⌉
= n.

(c) bxc+ byc+ bx+ yc 6 b2xc+ b2yc.

2. Let n be a positive integer and p a prime.

(a) Prove that the largest exponent e such that pe that divides n! is
∑
r∈N

⌊
n
pr

⌋
.

(b) Write an efficient algorithm that, given n, returns the exact number of trailing 0’s in the decimal
representation of n!.
(c) Prove that the largest exponent e for which pe divides

(2n
n

)
is
∑
r∈N

(⌊
2n
pr

⌋
− 2

⌊
n
pr

⌋)
.

3. Count the bit-strings of length ten that:
(a) start with 01 and end with 10.
(b) start with 01 and do not end with 10.
(c) neither start with 01 nor end with 10.
(d) contain neither 01 nor 10 as a substring.

(e) contain 01 but not 10 as a substring.
(f) contain both 01 and 10 as substrings.
(g) contain equal number of 0’s and 1’s.
(h) contain more 0’s than 1’s.

4. Count the positive integers less than or equal to 1000 that are:
(a) divisible by 5 or 7 (or both).
(b) divisible by both 5 and 7.
(c) divisible by neither 5 nor 7.
(d) divisible by 5 but not by 7.

(e) divisible by 6 or 8 (or both).
(f) divisible by both 6 and 8.
(g) divisible by neither 6 nor 8.
(h) divisible by 6 but not by 8.

5. Prove that if five points are placed inside an equilateral triangle of side 1 cm, there exist two of these points,
that are no more than 1/2 cm apart.

6. Let n be an odd positive integer and π a permutation of 1, 2, . . . , n, i.e., a bijective function A→ A, where

A := {1, 2, . . . , n}. Prove that the product
n∏

i=1

(i− π(i)) is even. (Hint: Look at the (n + 1)/2 images

π(1), π(3), π(5), . . . , π(n).) Show that the result need not hold if n is even.

7. Let A ⊆ {1, 2, . . . , 2n} with |A| = n+ 1. Prove that:
(a) There exist x1, y1 ∈ A such that x1 − y1 = 1.
(b) There exist x2, y2 ∈ A such that x2 − y2 = n.

* (c) There exist x3, y3 ∈ A such that gcd(x3, y3) = 1.

8. Let a1, a2, . . . , an be positive integers with
n∑

i=1

ai < 2n−1. Prove that there exist distinct disjoint non-empty

subsets A,B of {a1, a2, . . . , an} with the property that
∑

a∈A
a =

∑

b∈B
b .

* 9. Let f(X) be a polynomial with integer coefficients such that f(a) = f(b) = f(c) = 2 for three distinct
integers a, b, c. Prove that f(n) 6= 1 for all n ∈ Z. (Hint: First show that m − n divides f(m) − f(n) for
any two integers m,n.)

10. Prove the following identities involving binomial coefficients:

(a)
(
m+ n

r

)
=

r∑

k=0

(
m

k

)(
n

r − k

)
.
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(b)
(
m

r

)
=

2r∑

k=0

(−1)r+k
(
m

k

)(
m

2r − k

)
. (c)

(
m

r

)
=

br/2c∑

k=0

(−1)k
(
m

k

)(
m+ r − 2k − 1

r − 2k

)
.

11. Count the solutions of the following:
(a) x1 + x2 + x3 + x4 = 56 with non-negative integers x1, x2, x3, x4.
(b) x1 + x2 + x3 + x4 = 56 with positive integers x1, x2, x3, x4.
(c) x1 + x2 + x3 + x4 = 56 with integers x1 > 1, x2 > 2, x3 > 3, x4 > 4.
(d) x1 + x2 + x3 + x4 6 56 with non-negative integers x1, x2, x3, x4. (Hint: Introduce x5.)
(e) x1 + x2 + x3 + x4 6 56 with integers x1 > 1, x2 > 2, x3 > 3, x4 > 4.
(f) x1+x2+x3+x4 > 56 with integers x1 6 11, x2 6 22, x3 6 33, x4 6 44. (Hint: Take yi := 11i−xi.)

12. (a) Let A and B finite sets of sizes n and m respectively. Use the principle of inclusion and exclusion to
deduce that the number of surjective functions A→ B equals

mn −
(
m

1

)
(m− 1)n +

(
m

2

)
(m− 2)n − · · ·+ (−1)m−1

(
m

m− 1

)
1n .

Conclude that the Stirling number S(n,m) equals
1

m!

m−1∑

i=0

(−1)i
(
m

i

)
(m− i)n.

(b) In how many ways can six persons occupy three rooms so that no room remains vacant?

* 13. The principle of inclusion and exclusion is often stated in the following form. Prove it.

LetX be a set, P(X) the power set ofX , and let f, g : P(X)→ R be functions such that f(A) =
∑

S⊆A
g(S)

for all subsets A of X . Then g(A) =
∑

S⊆A
(−1)|A|−|S|f(S) for all subsets A of X .

14. Let S(n, r) denote the Stirling numbers of the second kind and Bn the Bell numbers. Prove that:

(a) S(n, 2) = 2n−1 − 1 for all n > 2.

(b) S(n, n− 1) =

(
n

2

)
for all n > 2.

(c) xn =
n∑

r=0

S(n, r)xr, where xr = x(x− 1) · · · (x− r + 1).

(d) S(n, r) =
n∑

k=r

rn−kS(k − 1, r − 1).

(e) Bn+1 =
n∑

k=0

(
n

k

)
Bk.

15. A permutation π of 1, 2, . . . , n is a rearrangement π1, π2 . . . , πn of these elements. For example,
4, 6, 1, 3, 5, 2 is a permutation of 1, 2, 3, 4, 5, 6. We may view π as a bijective function from {1, 2, . . . , n} to
itself, where π(i) = πi. For example, the permutation 4, 6, 1, 3, 5, 2 of 1, 2, 3, 4, 5, 6 is viewed as:

i 1 2 3 4 5 6

π(i) 4 6 1 3 5 2

If π(a1) = a2, π(a2) = a3, . . . , π(ak−1) = ak, π(ak) = a1, we say that a1, a2, . . . , ak form a cycle of
length k, denoted (a1, a2, . . . , ak). Each permutation can be decomposed into pairwise disjoint cycles. For
example, the permutation 4, 6, 1, 3, 5, 2 has three cycles (1, 4, 3), (2, 6), (5). The number of permutations of
1, 2, . . . , n having exactly r cycles is called the Stirling number of the first kind and is denoted by s(n, r).
Prove the following identities:
(a) s(n, r) = 0 if r > n.

(b) s(n, 0) =

{
1 if n = 0,
0 if n > 0.

(c) s(n, 1) = (n− 1)! for all n > 1.

(d) s(n, n− 1) =

(
n

2

)
for all n > 2.

(e) s(n, n) = 1 for all n > 0.

(f)
n∑

r=0

s(n, r) = n! for all n > 0.

(g) s(n, r) = s(n−1, r−1)+(n−1)s(n−1, r) for all n > 1.

(h) xn =
n∑

r=0

s(n, r)xr, where xn = x(x+ 1) · · · (x+n− 1).
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16. Define a recurrence relation and the requisite number of initial conditions for each of the following:

(a) The number of binary strings of length n, that do not contain three consecutive 0’s.

* (b) The number of binary strings of length n, that do not contain k consecutive 0’s, where k ∈ N0 is a
constant. (Hint: Look at the first occurrence of 1.)

17. How many initial conditions are needed for completely and uniquely specifying the sequences defined by
the following recurrence relations? Also explicitly mention for which values of n one should specify these
initial conditions. Assume that each sequence an in this exercise starts from n = 0.
(a) an = an−2.
(b) an = a2.
(c) an = 2a2

n−2 + 3a3
n−3 + 4n−4.

(d) an = (n− 1)an−1 + (n− 2)an−2 + · · ·+ 2a2 + a1.
(e) an = nan−1 + (n− 1)an−2 + · · ·+ 3a2 + 2a1 + a0.
(f) an = abn/2cadn/2e + 1.

18. Solve the following recurrence relations:
(a) a0 = 2, a1 = 3, an = an−1 + 12an−2 for n > 2.
(b) a0 = 2, a1 = 3, 6an = an−1 + 12an−2 for n > 2.
(c) a0 = 2, a1 = 3, a2 = 4, an = an−1 + 4an−2 − 4an−2 for n > 3.
(d) a0 = 2, a1 = 3, a2 = 4, a3 = 5, an = 2an−2 − an−4 for n > 4.
(e) a0 = 2, a1 = 3, a2 = 4, a3 = 5, an = 3an−2 − 2an−4 for n > 4.
(f) a0 = 2, an = 5an−1 + (n2 + n+ 1) for n > 1.
(g) a0 = 2, an = 5an−1 + (n2 + n+ 1)2n for n > 1.
(h) a0 = 2, a1 = 3, an = 2(an−1 + an−2 + 2n) for n > 2.
(i) a0 = 2, a1 = 3, an = 4(an−1 − an−2 + 2n) for n > 2.
(j) a0 = 2, a1 = 3, an = 4(an−1 − an−2 + n22n−1) for n > 2.

19. Solve the following recurrence relations:
(a) a0 = 2, an = 2an−1 + 2n + n2 for all n > 1.
(b) a0 = 2, a1 = 3, an = 2an−1 − an−2 + 2n + n2 for all n > 2.
(c) a0 = 2, a1 = 3, an = an−2 + 2n + n3n + n24n for all n > 2.

20. Reduce the following recurrence relations to standard forms and solve:
(a) a0 = 2, a1 = 3, an = an+2 − an+1 − n for all n > 0.
(b) a0 = 2, a1 = 3, 4an+1 + 8an − 5an−1 = 2n for all n > 1.
(c) a0 = 2, a1 = 3, an = an−1 + 12(an−2 + 2n−2 + 1) for all n > 2.
(d) a0 = 2, a3

n = an−1(3a2
n − 3anan−1 + a2

n−1) + n3 for all n > 1.
(e) a0 = 2, a1 = 3, 2anan−2 − 2a2

n−1 − 3an−1an−2 = 0 for all n > 2.
(f) a0 = 2, a1 = 3, 2an = 4n × 16an−2 for all n > 2.

21. Find big-Oh estimates for the following positive-integer-valued increasing functions f(n).
(a) f(n) = 125f(n/4) + 2n3 whenever n = 4k for k ∈ Z+.
(b) f(n) = 125f(n/5) + 2n3 whenever n = 5k for k ∈ Z+.
(c) f(n) = 125f(n/6) + 2n3 whenever n = 6k for k ∈ Z+.

22. Let f(n) be an increasing positive-real-valued function of a non-negative integer variable n. Give a big-Oh
estimate of f(n) for each of the following cases:
(a) f(n) = 2f(

√
n) + 1 whenever n is a perfect square bigger than 1.

(b) f(n) = 2f(
√
n) + log n whenever n is a perfect square bigger than 1.

(c) f(n) = 2f(
√
n) + log2 n whenever n is a perfect square bigger than 1.

(d) f(n) = af( b
√
n) + c(logn)d whenever n is a perfect b-th power bigger than 1. Here a, b ∈ N, a > 1,

b > 2, c, d ∈ R, c > 0 and d > 0.
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23. Find the generating functions for the following sequences:
(a) 13, 23, 33, . . . , (n+ 1)3, . . . . (b) 14, 24, 34, . . . , (n+ 1)4, . . . .

(c)
1

2
,

1× 3

2× 4
,
1× 3× 5

2× 4× 6
, . . . ,

1× 3× 5× · · · × (2n+ 1)

2× 4× 6× · · · × (2n+ 2)
, . . . .

24. Use generating functions to solve the following recurrence relations:
(a) a0 = 2, an = 5an−1 + 4n+ 3 for n > 1.
(b) a0 = 2, a1 = 3, an = 5an−1 − 6an−2 for n > 2.
(c) a0 = 2, a1 = 3, an = 5an−1 − 6an−2 + 7n for n > 2.
(d) a0 = 2, a1 = 3, an = 3an−1 − 2an−2 + 2n for n > 2.
(e) a0 = 2, a1 = 3, an = 3an−1 − 2an−2 + 2n + 1 for n > 2.
(f) a0 = 2, a1 = 3, an = 4an−1 − 4an−2 + 2n + 1 for n > 2.

25. The n-th Catalan number Cn stands for the number of ways of fully parenthesizing the product x0x1 · · ·xn.
Prove that Catalan numbers satisfy the recurrence:

C0 = 1

Cn =
n−1∑

i=0

CiCn−i−1 for n > 1.

Define the power series C(x) = C0 +C1x+C2x
2 + · · · =

∑

n∈N0

Cnx
n. Show that this power series satisfies

C(x) = 1 + xC(x)2, so that C(x) =
1−
√

1− 4x

2x
. Conclude that Cn =

1

n+ 1

(
2n

n

)
.

* 26. Catalan numbers are known to have a bunch of combinatorial interpretations. Prove that Cn equals each of
the following:
(a) The number of sequences a1a2 . . . a2n of length 2n with each ai ∈ {1,−1}, ∑2n

i=1 ai = 0, and∑j
i=1 ai > 0 for all j ∈ {1, 2, . . . , 2n}.

(b) The number of strings consisting of 2n balanced left and right parentheses.
(c) The number of ways of drawing n non-intersecting chords with 2n distinct endpoints on the
circumference of a circle.
(d) The number of (rooted) binary trees with n internal vertices. (An internal vertex is one that has at least
one child.)
(e) The number of paths from the lower left corner to the top right corner in an n× n grid that do not rise
above the grid diagonal connecting the two corners mentioned above.
(f) The number of ways an (n+ 2)-gon can be cut into triangles.

27. Let a(x) = a0 + a1x + a2x
2 + · · · , b(x) = b0 + b1x + b2x

2 + · · · and c(x) = c0 + c1x + c2x
2 + · · · be

(formal) power series. Show that:

(a) a(x)(b(x) + c(x)) = a(x)b(x) + a(x)c(x).

(b) a(x) is invertible (i.e., there exists a power series d(x) with a(x)d(x) = 1) if and only if a0 6= 0.
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