Exercise set 2

- 1. Determine which of the following functions are injective, which are surjective, and which are bijective. Also describe the inverses of the bijective functions.
 - (a) The function $\mathbb{Z} \to \mathbb{N}_0$ that maps $n \mapsto |n|$.
 - (b) The function $\mathbb{Z} \to \mathbb{N}$ that maps $n \mapsto 2n+1$ for $n \ge 0$ and $-n \mapsto 2n+2$ for n > 0.

(c) The function
$$f : \mathbb{N} \to \mathbb{N}$$
 with $f(1) = 9$ and $f(n+1) = \begin{cases} 3f(n)+1 & \text{if } f(n) \text{ is odd} \\ \frac{1}{2}f(n) & \text{if } f(n) \text{ is even} \end{cases}$ for $n \ge 1$.

- (d) A function $f: A \to A$ satisfying f(f(x)) = x for all $x \in \tilde{A}$.
- (e) A function $f : A \to A$ satisfying f(f(f(x))) = x for all $x \in A$.
- (f) A function $f : A \to A$ satisfying f(f(x)) = f(x) for all $x \in A$.
- (g) A function $f : A \to A$ satisfying f(f(f(x))) = f(x) for all $x \in A$.
- **2.** Construct explicit bijections between \mathbb{N} and the following sets:
 - (a) $\mathbb{N} \times \mathbb{N}$.
 - (b) The subset of \mathbb{N} comprising integers whose decimal representations consist of the digit 5 only.
 - (c) The subset of \mathbb{N} comprising integers whose decimal representations consist of the digits 4, 5 only.
 - (d) The subset of \mathbb{N} comprising integers whose decimal representations consist of the digits 4, 5, 6 only.

3. Let A, B be finite sets with |A| = m and |B| = n. Determine the numbers of:

- (a) functions $A \rightarrow B$,
- (b) injective functions $A \to B$ (provided that $m \leq n$),
- ** (c) surjective functions $A \to B$ (provided that $m \ge n$),
 - (d) bijective functions $A \rightarrow B$ (provided that m = n),
 - (e) symmetric relations on A,
 - (f) reflexive and symmetric relations on A.
- **4.** Let $f : A \to B$ and $g : B \to C$ be functions.
 - (a) If f and g are both injective, prove that $g \circ f$ is injective too.
 - (b) If f and g are both surjective, prove that $g \circ f$ is surjective too.
 - (c) If f and g are both bijective, prove that $g \circ f$ is bijective too. Show also that in this case we have $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - (d) If $g \circ f$ is injective, prove that f is injective too.
 - (e) If $g \circ f$ is surjective, prove that g is surjective too.
 - (f) Give an example in which g is not injective, but $g \circ f$ is injective.
 - (g) Give an example in which f is not surjective, but $g \circ f$ is surjective.
- **5.** Let A be a set of cardinality n = |A| and $f : A \to A$ a function.
 - (a) If n is finite, show that f is injective if and only if f is surjective.
 - (b) If $n = \infty$, demonstrate by examples that neither of the implications of Part (a) is true.
- 6. Let $f : A \to B$ be a function. For $S \subseteq A$ define the set $f(S) = \{f(x) \mid x \in S\} \subseteq B$. Also for $T \subseteq B$ define $f^{-1}(T) = \{x \in A \mid f(x) \in T\} \subseteq A$. Let S, S_1, S_2 be subsets of A and T, T_1, T_2 subsets of B. Prove the following assertions:
 - (a) If $S_1 \subseteq S_2$, then $f(S_1) \subseteq f(S_2)$.
 - **(b)** If $T_1 \subseteq T_2$, then $f^{-1}(T_1) \subseteq f^{-1}(T_2)$.
 - (c) $S \subseteq f^{-1}(f(S)).$
 - (d) $f(f^{-1}(T)) \subseteq T$.
 - (e) $f(f^{-1}(f(S))) = f(S)$.
 - (f) $f^{-1}(f(f^{-1}(T))) = f^{-1}(T)$.

- * 7. Let A be a set and $\mathcal{P}(A)$ the power set of A. Prove that there cannot exist a bijection between A and $\mathcal{P}(A)$.
- *8. Let $f : A \to A$ be a bijection. Assume that there exists a positive integer r such that the r-fold composition f^r of f is the identity map ι_A . The smallest such (positive) r is called the *order* of f. If no such r exists, we say that f is of *infinite order*.

Take $A = \mathbb{Z}$ and consider the following functions $\mathbb{Z} \to \mathbb{Z}$:

$$f(n) = \begin{cases} n+1 & \text{if } n \text{ is even,} \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$
$$g(n) = \begin{cases} n-1 & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

Prove the following assertions:

- (a) Both f and g are bijections on \mathbb{Z} .
- (b) Both f and g are of order 2.
- (c) $g \circ f$ is of infinite order.
- 9. Which of the following relations are reflexive? Symmetric? Anti-symmetric? Transitive?
 - (a) \subseteq on $\mathcal{P}(A)$, where A is a non-empty set.
 - (b) The relation R_1 on \mathbb{N} defined as: $a R_1 b$ if and only if the decimal representations of a and b start with the same digit.

(c) The relation R_2 on \mathbb{N} defined as: $a R_2 b$ if and only if the decimal representations of a and b contain a common digit. (Do not allow leading 0 digits.)

- (d) The relation R_3 on $\mathbb{N} \times \mathbb{N}$ defined as: $(a, b) R_3(c, d)$ if and only if $(a \leq b)$ or $(a = b \text{ and } c \leq d)$.
- 10. Take some fixed $n \in \mathbb{N}_0$ and let \mathcal{M} denote the set of all $n \times n$ matrices with real entries. Two matrices $A, B \in \mathcal{M}$ are called *similar* if $B = PAP^{-1}$ for some invertible (i.e., nonsingular) matrix $P \in \mathcal{M}$. Verify that similarity is an equivalence relation on \mathcal{M} .
- **11.** Let A denote the set of all functions $\mathbb{N} \to \mathbb{N}$. Define a relation \preceq on A as follows: $f \preceq g$ if and only if $f(n) \leq g(n)$ for all $n \in \mathbb{N}$. Argue that \preceq is a partial order on A.
- 12. Let A denote the set of all positive real-valued functions of natural numbers (or non-negative integers). Define a relation O on A as: f O g if and only if f = O(g). Also define the relation Θ on A as: $f \Theta g$ if and only if $f = \Theta(g)$.
 - (a) Prove that O is *not* a partial order on A.
 - (b) Prove that Θ is an equivalence relation on A.

(c) Denote by A' the set of equivalence classes of A with respect to Θ . Let $[f], [g] \in A'$ for some $f, g \in A$. Define a relation O' on A' as: [f] O'[g] if and only if f = O(g). Show that the relation O' is well-defined, i.e., independent of the choices of the representatives of [f] and [g]. Prove that O' is a partial order on A'.

- **13.** Prove the following assertions:
 - (a) Any infinite subset of a countable set is countable.
 - (b) If A and B are countable (but not necessarily disjoint), then $A \cup B$ and $A \times B$ are countable.
 - (c) The union of a countable collection of finite/countable sets is countable.
 - (d) The set of strings (finite sequences) of the symbols 0, 1 is countable.

(e) The set $\mathbb{A} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ is a root of a non-zero polynomial with integer coefficients} \}$ is countable. (Elements of \mathbb{A} are called *algebraic numbers*.)

- (f) The set \mathbb{C} of complex numbers is uncountable.
- (g) The set of transcendental (i.e., non-algebraic) real numbers is uncountable.