- **1.** Let A, B, C be sets. Which of the following statements are true?
 - (a) $A \setminus B = A \cap \overline{B}$.
 - (b) $(A \setminus B) \setminus C = A \setminus (B \setminus C).$
 - (c) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C).$
 - (d) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$
- **2.** Let p, q, r be propositions. Which of the following statements are true?
 - (a) $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
 - **(b)** $(p \Rightarrow q) \land (q \Rightarrow r)$ is equivalent to $p \Rightarrow r$.
 - (c) $(p \Rightarrow q) \land (q \Rightarrow r)$ is equivalent to $(p \Rightarrow q) \land (p \Rightarrow r)$.
 - (d) $p \Rightarrow (q \Rightarrow r)$ is equivalent to $(p \land q) \Rightarrow r$.
 - (e) $\neg p \Rightarrow (q \Rightarrow r)$ is equivalent to $q \Rightarrow (p \lor r)$.

3. Which of the following statements are true?

- (a) $\forall x \in \mathbb{N} \exists y \in \mathbb{N} \left[(y > 1) \land (y^2 \mid x) \right].$
- (b) $\forall x \in \mathbb{N} \exists y \in \mathbb{N} \forall z \in \mathbb{N} \setminus \{1\} \left[(y > x) \land (z^2 \mid y) \right].$
- (c) $\forall x \in \mathbb{N} \ \forall z \in \mathbb{N} \setminus \{1\} \ \exists y \in \mathbb{N} \ \left[(y > x) \land (z^2 \mid y) \right].$
- (d) For all integers n > 1, $n^4 + 4^n$ is composite.
- (e) There exist positive integers x, y with $x \neq y$ such that $x^y = y^x$.
- ****** (f) There exist irrational numbers x, y such that x^y is rational.

4. Consider the statement:

u: If n and $n^2 + 8$ are prime, then $n^3 + 4$ and $n^4 + 2$ are prime.

- (a) What is the converse statement of u?
- (b) What is the contrapositive statement of u?
- * (c) Prove that u is true for all $n \in \mathbb{N}$.
- * 5. Let $f(n) = a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0, d > 0, a_d > 0$, be a polynomial with integer coefficients. Prove that there exists an integer n for which f(n) is composite.
 - 6. Use the principle of mathematical induction to prove the following assertions:
 - (a) $2^n > n$ for all $n \in \mathbb{N}$.
 - (**b**) $2^n \ge n^2$ for all integer $n \ge 4$.
 - (c) $1^4 + 2^4 + \dots + n^4 = \frac{1}{30}n(n+1)(2n+1)(3n^2 + 3n 1).$
 - (d) Let $a_n, n \in \mathbb{N}$, be a sequence satisfying the following: $a_1 = 2, a_2 = 10$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for all $n \in \mathbb{N}$. Then $a_n > 3^{n-1}$ for all $n \in \mathbb{N}$.
 - (e) The sequence $a_n, n \in \mathbb{N}$, of Part (d) has the closed form formula: $a_n = 3^n + (-1)^n$ for all $n \in \mathbb{N}$.
 - (f) $x^{2n+1} + y^{2n+1}$ is divisible by x + y for all integer $n \ge 0$.

- (g) $1/\sqrt{1} + 1/\sqrt{2} + \dots + 1/\sqrt{n} > 2(\sqrt{n+1} 1)$ for all $n \in \mathbb{N}$.
- (h) $H_1 + H_2 + \cdots + H_n = (n+1)H_n n$ for all $n \in \mathbb{N}_0$, where H_n denotes the *n*-th harmonic number.
- (i) $F_1 + F_2 + \dots + F_n = F_{n+2} 1$ for all $n \ge 0$, where F_n denotes the *n*-th Fibonacci number.
- (j) $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$ for all $n \ge 0$.
- (k) If $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then $A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$ for all $n \in \mathbb{N}$.
- (1) $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ for all $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$.
- 7. Find the flaw in the following proof:

Theorem: All horses are of the same color.

Proof Let there be n horses. We proceed by induction on n. If n = 1, there is nothing to prove. So assume that n > 1 and that the theorem holds for any group of n - 1 horses. From the given n horses discard one, say the first one. Then all the remaining n - 1 horses are of the same color by the induction hypothesis. Now put the first horse back and discard another, say the last one. Then the first n - 1 horses have the same color again by the induction hypothesis. So all the n horses must have the same color as the ones that were not discarded either time. •

8. What is the problem in the following inductive definition of sets.

Basis: A collection with no members is a set.

Induction: If S is a set and x is an object not present in S, then the collection obtained by adding x to S is also a set.

- 9. Inductively define the following sequences $a_n, n \in \mathbb{N}$.
 - (a) $a_n = 2n^3$.
 - (**b**) $a_n = n^2 + 2n^3$.
 - (c) $a_n = 3^{2n}$.
 - (d) $a_n = 3^{2^n}$.
- * (e) $a_n = 2^n + 3^{2n}$.
- 10. (a) Let a_n denote the number of strings of length n over the lower-case Roman alphabet $\{a, b, c, \ldots, z\}$ containing two consecutive vowels. Find a recursive formula for a_n .

(b) Let b_n denote the number of strings of length n over the lower-case Roman alphabet $\{a, b, c, \ldots, z\}$ not containing two consecutive consonants. Find a recursive formula for b_n .