Answer any <u>three</u> questions from Part I, any <u>five</u> questions from Part II, and any one question from Part III.

Do not use facts not proved in the lectures.

Part I Answer any <u>three</u> questions

1. Solve the recurrence relation:

Total marks: 50

 $\begin{array}{rcl} T_1 &=& 3, \\ T_2 &=& 7, \\ T_n &=& 2T_{n-1} - T_{n-2} + 2 \quad \text{for } n \geqslant 3. \end{array}$

- **2.** Compute the multiplicative inverse of 17 modulo 71.
- **3.** Compute the order of 19 in the multiplicative group \mathbb{Z}_{32}^* .
- 4. Compute the <u>monic</u> gcd of the polynomials $x^4 + 3x^3 + 2x^2 + 4x + 1$ and $x^3 + 2x^2 + 5x + 3$ in $\mathbb{Z}_7[x]$. (5)

Part II Answer any <u>five</u> questions

- 5. Let G be an Abelian group. An element $a \in G$ is called a *torsion element* of G if ord a is finite. Prove that the set of all torsion elements of G is a subgroup of G. (5)
- 6. Prove that for any integer $n \ge 3$ the multiplicative group $\mathbb{Z}_{2^n}^*$ is *not* cyclic. (Hint: You may look at the elements $2^{n-1} \pm 1$.) (5)
- 7. Let R be a ring. Two elements a, b ∈ R are called *associates*, denoted a ~ b, if a = ub for some unit u of R. Prove that ~ is an equivalence relation on R.
 (5)
- 8. Prove that every finite integral domain is a field. (Hint: For a non-zero element a in a finite integral domain R, look at the function $R \to R$ that maps $r \mapsto ra$.) (5)
- 9. Let $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \ldots$ be non-zero ideals of $\mathbb Z$ satisfying the condition:

 $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \cdots \subseteq \mathfrak{a}_n \subseteq \cdots$.

Prove that there exists $n \in \mathbb{N}$ such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \cdots$, that is, there cannot exist an infinite strictly increasing chain of ideals of \mathbb{Z} . (Hint: \mathbb{Z} is a PID.) (5)

10. Let F be a finite field. Prove that there exists a polynomial $f(x) \in F[x]$ having no roots in F. (Do <u>not</u> use the fact that F[x] contains an irreducible polynomial of every degree $n \in \mathbb{N}$.) (5)

November 21, 2005

Duration: 3 hours

(5)

(5)

(5)

Part III Answer any <u>one</u> question

11. (a) Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying $x^n = e$ is at most n for every $n \in \mathbb{N}$. Prove that G is cyclic. (Do <u>not</u> use the structure theorem for finite Abelian groups.) (8)

(b) Prove that any finite subgroup of the multiplicative group $F^* = F \setminus \{0\}$ of any field F (possibly infinite) is cyclic. (In particular, the multiplicative group of any finite field is cyclic.) (2)

12. Let R be a commutative ring and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in R[x]$. Prove that f(x) is a unit in R[x] if and only if a_0 is a unit in R and a_1, \dots, a_n are nilpotent elements of R. (Recall that an element a in a ring A is called nilpotent if $a^k = 0$ for some positive integer k.) (10)