CS21001 Discrete Structures, Autumn 2005

End-semester examination: Solutions

1. Solve the recurrence relation:

$$\begin{array}{rcl} T_1 & = & 3, \\ T_2 & = & 7, \\ T_n & = & 2T_{n-1} - T_{n-2} + 2 & \text{for } n \geqslant 3. \end{array}$$

Solution The characteristic equation $\chi(x) = x^2 - 2x + 1 = (x-1)^2 = 0$ has a single root 1 of multiplicity 2. So the particular solution is of the form $T_n = an^2$ for some constant a. Plugging in this solution in the recurrence gives

$$an^2 = 2a(n-1)^2 - a(n-2)^2 + 2$$
, i.e., $0 = -2a + 2$, i.e., $a = 1$.

Thus a general solution for the given recurrence is of the form $T_n = 1^n(bn+c) + n^2 = n^2 + bn + c$ for some constants b, c. The initial conditions give:

$$b+c = 2,$$

$$2b+c = 3.$$

The solution of this system is b=c=1. To sum up, the given recurrence has the solution

$$T_n = n^2 + n + 1$$
 for all $n \in \mathbb{N}$.

2. Compute the multiplicative inverse of 17 modulo 71.

Solution Let us compute the extended gcd of 17 and 71:

$$71 = 4 \times 17 + 3,$$

$$17 = 5 \times 3 + 2,$$

$$3 = 1 \times 2 + 1,$$

$$2 = 2 \times 1.$$

It follows that $1 = 3 - 1 \times 2 = 3 - (17 - 5 \times 3) = 6 \times 3 - 17 = 6 \times (71 - 4 \times 17) - 17 = -25 \times 17 + 6 \times 71$. Therefore, $17^{-1} = -25 = 71 - 25 = 46$ modulo 71.

3. Compute the order of 19 in the multiplicative group \mathbb{Z}_{32}^* .

Solution $\phi(32) = \phi(2^5) = 2^4(2-1) = 2^4$, i.e., ord 19 is of the form 2^i for some $i \in \{0, 1, 2, 3, 4\}$. Now $19^1 = 19$, $19^2 = 361 = 9$, $19^4 = 81 = 17$, $19^8 = 289 = 1$ modulo 32. Thus the order of 19 in \mathbb{Z}_{32}^* is 8.

4. Compute the monic gcd of the polynomials $x^4 + 3x^3 + 2x^2 + 4x + 1$ and $x^3 + 2x^2 + 5x + 3$ in $\mathbb{Z}_7[x]$.

Solution Polynomial division yields:

$$x^4 + 3x^3 + 2x^2 + 4x + 1 = (x+1)(x^3 + 2x^2 + 5x + 3) + 2x^2 + 3x + 5,$$

 $x^3 + 2x^2 + 5x + 3 = (4x+2)(2x^2 + 3x + 5).$

The last non-zero remainder is $2x^2 + 3x + 5 = 2(x^2 + 5x + 6)$. Thus the monic gcd of the given two polynomials is $x^2 + 5x + 6$.

1

5. Let G be an Abelian group. An element $a \in G$ is called a *torsion element* of G if ord a is finite. Prove that the set of all torsion elements of G is a subgroup of G.

Solution Denote by H the set of all elements of G of finite orders.

[Closure] Let $a, b \in H$, ord a = m and ord b = n. But then $(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(b^n)^m = e$, i.e., ord $(ab) \mid mn$. In particular, ord(ab) is finite, i.e., $ab \in H$.

[Inverse] Let $a \in H$. Since $a^k = e$ if and only if $(a^k)^{-1} = (a^{-1})^k = e$, we have $\operatorname{ord}(a^{-1}) = \operatorname{ord} a$.

6. Prove that for any integer $n \ge 3$ the multiplicative group $\mathbb{Z}_{2^n}^*$ is *not* cyclic. (Hint: You may look at the elements $2^{n-1} \pm 1$.)

Solution For $n \geqslant 3$ the elements $2^{n-1} \pm 1$ are distinct modulo 2^n and neither of them is the identity element. Also $(2^{n-1} \pm 1)^2 = 2^{2n-2} \pm 2^n + 1 = 1$ modulo 2^n , since $2n-2 \geqslant n$ for $n \geqslant 3$. Thus $2^{n-1}-1$ and $2^{n-1}+1$ are distinct elements of $\mathbb{Z}_{2^n}^*$ of order 2, i.e., G has two distinct subgroups $\{1, 2^{n-1} - 1\}$ and $\{1, 2^{n-1} + 1\}$ of the same size 2. We know that a finite cyclic group of order r has a unique subgroup of order r for every divisor r of r. Therefore, $\mathbb{Z}_{2^n}^*$ cannot be cyclic.

7. Let R be a ring. Two elements $a, b \in R$ are called *associates*, denoted $a \sim b$, if a = ub for some unit u of R. Prove that \sim is an equivalence relation on R.

Solution [Reflexive] $a = 1 \times a$ for all $a \in R$.

[Symmetric] Let a=ub for some unit u. Let $v \in R$ be the element with uv=vu=1 in R. Then v is also a unit of R, and b=va.

[Transitive] Let a=ub and b=vc for some units u,v (i.e., $u^{-1},v^{-1}\in R$). Then a=(uv)c. Moreover, $(v^{-1}u^{-1})(uv)=v^{-1}(u^{-1}u)v=v^{-1}v=e$, i.e., uv is also a unit in R.

8. Prove that every finite integral domain is a field. (Hint: For a non-zero element a in a finite integral domain R, look at the function $R \to R$ that maps $r \mapsto ra$.)

Solution Let R be a finite integral domain. Take any non-zero $a \in R$. I have to show that a has an inverse in R. Consider the function $\varphi: R \to R$ that maps $r \mapsto ra$. Since R is an integral domain and $a \neq 0$, ra = sa implies r = s, i.e., φ is injective. Moreover, R is a finite set. So φ is indeed a bijection. Thus there exists an element $r \in R$ such that $\varphi(r) = ra = 1$.

9. Let $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \ldots$ be non-zero ideals of \mathbb{Z} satisfying the condition:

$$\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \cdots \subseteq \mathfrak{a}_n \subseteq \cdots$$
.

Prove that there exists $n \in \mathbb{N}$ such that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \cdots$, that is, there cannot exist an infinite strictly increasing chain of ideals of \mathbb{Z} . (Hint: \mathbb{Z} is a PID.)

Solution \mathbb{Z} is a PID. Let $\mathfrak{a}_n = \langle a_n \rangle$ with $a_n > 0$ for all $n \in \mathbb{N}$. Since $a_n \in \langle a_n \rangle \subseteq \langle a_{n+1} \rangle$, it follows that a_n is an integral multiple of a_{n+1} . In particular, $a_1 \geqslant a_2 \geqslant a_3 \geqslant \cdots \geqslant a_n \cdots$. But we cannot have a strictly decreasing infinite sequence of positive integers. So there exists $n \in \mathbb{N}$ such that $a_n = a_{n+1} = a_{n+2} = \cdots$, which in turn implies that $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \mathfrak{a}_{n+2} = \cdots$.

10. Let F be a finite field. Prove that there exists a polynomial $f(x) \in F[x]$ having no roots in F. (Do <u>not</u> use the fact that F[x] contains an irreducible polynomial of every degree $n \in \mathbb{N}$.)

Solution Let $F = \{a_1, a_2, \dots, a_n\}$, where n is the size of F. The polynomial

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) + 1$$

evaluates to 1 when x is substituted by any element of F, i.e., f(x) has no root in F.

11. (a) Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying $x^n = e$ is at most n for every $n \in \mathbb{N}$. Prove that G is cyclic. (Do <u>not</u> use the structure theorem for finite Abelian groups.)

2

Solution I will prove the contrapositive of the given statement, i.e., I will assume that G is not cyclic and determine an $n \in \mathbb{N}$ for which $x^n = e$ has more than n solutions in G.

Let $m=|G|=p_1^{e_1}\cdots p_r^{e_r}$ with pairwise distinct primes p_1,\ldots,p_r , and with $r,e_i\in\mathbb{N}$. Suppose that for each $i\in\{1,\ldots,r\}$ there exists an element $a_i\in G$ with the property that $p_i^{e_i}\mid\operatorname{ord} a_i$. Call $m_i=\operatorname{ord} a_i$. Define the element $b_i=a_i^{m_i/p_i^{e_i}}$. Then $\operatorname{ord} b_i=p_i^{e_i}$. Since G is Abelian, the element $b_1\cdots b_r$ has order $p_1^{e_1}\cdots p_r^{e_r}=m$, i.e., G is cyclic, a contradiction. Thus there exists at least one i for which $p_i^{e_i}$ does not divide $\operatorname{ord} a$ for all $a\in G$. Then $n=\operatorname{lcm}(\operatorname{ord} a\mid a\in G)$ is also not divisible by $p_i^{e_i}$ for this particular i. Moreover, $\operatorname{ord} a\mid m$ for all $a\in G$, i.e., n is a proper divisor of m. In particular, m>n. Finally note that $x^n=e$ is satisfied by all of the m elements of G.

(b) Prove that any finite subgroup of the multiplicative group $F^* = F \setminus \{0\}$ of any field F (possibly infinite) is cyclic. (In particular, the multiplicative group of any finite field is cyclic.)

Solution Since F is a field, the polynomial $x^n - 1$ can have at most n roots in F and hence in any subset of F. The result then follows immediately from Part (a).

12. Let R be a commutative ring and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in R[x]$. Prove that f(x) is a unit in R[x] if and only if a_0 is a unit in R and a_1, \ldots, a_n are nilpotent elements of R. (Recall that an element a in a ring A is called nilpotent if $a^k = 0$ for some positive integer k.)

Solution [if] Let $a_1^{k_1}=a_2^{k_2}=\cdots=a_n^{k_n}=0$ for some positive integers k_1,k_2,\ldots,k_n . Also let $a_0b_0=1$. Take $k=n\times\max(k_1,k_2,\ldots,k_n)$. Let $g(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x$, i.e., $f(x)=a_0+g(x)$. We have $g(x)^k=0$, since every term in the expansion of $g(x)^k$ has a coefficient involving $a_i^{l_i}$ with $l_i\geqslant k_i$ for at least one $i\in\{1,2,\ldots,n\}$. But then

$$f(x)b_0^k \left[a_0^{k-1} - a_0^{k-2}g(x) + a_0^{k-2}g(x)^2 - \dots + (-1)^{k-1}g(x)^{k-1} \right] = (a_0b_0)^k + b_0^k(-1)^{k-1}g(x)^k = 1,$$

i.e., f(x) has an inverse in R[x].

[only if] Let $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0 \in R[x]$ be the inverse of f(x) in R[x]. Since f(x)g(x) = 1, equating coefficients of $x^0, x^1, \dots, x^{m+n-1}, x^{m+n}$ from the two sides yields:

$$a_{0}b_{0} = 1,$$

$$a_{0}b_{1} + a_{1}b_{0} = 0,$$

$$a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0} = 0,$$

$$...$$

$$a_{n-1}b_{m} + a_{n}b_{m-1} = 0,$$

$$a_{n}b_{m} = 0.$$

The first equation shows that a_0 and b_0 are units. Multiplying the second last equation by a_n yields $a_n^2b_{m-1}=0$, the third last equation by a_n^2 yields $a_n^3b_{m-2}=0$, and so on. Finally, we get $a_n^{m+1}b_0=0$. Since b_0 is a unit, it follows that $a_n^{m+1}=0$, i.e., a_n is nilpotent.

It is easy to check that the sum of a nilpotent element and a unit is again a unit. (For example, look at the proof of the [if] part.) In particular, $f(x) + (-a_n x^n)$ is a unit. But then using the above argument we can conclude that a_{n-1} is nilpotent.

Proceeding in this fashion proves that $a_{n-2}, a_{n-3}, \ldots, a_1$ are all nilpotent.