(CS21001 Discrete Structures, Autumn 2005

End-semester examination : Solutions

1. Solve the recurrence relation:

T = 37
T, = 77
T, = 21, 1—T, 9+2 forn > 3.

Solution The characteristic equation x(z) = 22 — 2z +1 = (z —1)? = 0 has a single root 1 of multiplicity
2. So the particular solution is of the form 7}, = an? for some constant a. Plugging in this solution in the
recurrence gives

an® =2a(n —1)* —a(n —2)*+2, ie, 0= —2a + 2, ie,a = 1.

Thus a general solution for the given recurrence is of the form T}, = 1*(bn + ¢) + n? = n? + bn + c for
some constants b, c. The initial conditions give:

b+c = 2,
2b+c¢ =

The solution of this system is b = ¢ = 1. To sum up, the given recurrence has the solution

T,=n’>+n+1foralln e N.

2. Compute the multiplicative inverse of 17 modulo 71.

Solution Let us compute the extended gcd of 17 and 71:

71 = 4x17+3,

17 = 5x3+42
= 1x2+41,
= 2x1.

It followsthat 1 =3—1x2=3—(17—5%x3) =6x3—-17=6x(7T1—-4x17)—17 = =25 x 17+ 6 x 71.
Therefore, 1771 = —25 = 71 — 25 = 46 modulo 71.

3. Compute the order of 19 in the multiplicative group Z3,.

Solution ¢(32) = ¢(2°) = 24(2 — 1) = 24, i.e., ord 19 is of the form 2 for some i € {0,1,2,3,4}. Now
191 =19, 192 =361 = 9, 19* = 81 = 17, 198 = 289 = 1 modulo 32. Thus the order of 19 in L3y is 8.

4. Compute the monic ged of the polynomials x4 + 322 + 222 + 4z + 1 and 23 + 222 + 5z + 3 in Z7[z].

Solution Polynomial division yields:

st 433+ 22% 4 +1 = (4 1) (2 + 222 + 52+ 3) + 222 + 32 + 5,
23+ 222 5043 = (4o +2)(222 + 3z + 5).

The last non-zero remainder is 222 + 3x + 5 = 2(x? + 5z + 6). Thus the monic gcd of the given two
polynomials is 22 + 5z + 6.
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Let G be an Abelian group. An element a € G is called a torsion element of G if ord a is finite. Prove that
the set of all torsion elements of G is a subgroup of G.

Solution Denote by H the set of all elements of G of finite orders.

[Closure] Let a,b € H, orda = m and ord b = n. But then (ab)™" = a™"b"™" = (a™)"(b™)™ = e, i.e.,
ord(ab) | mn. In particular, ord(ab) is finite, i.e., ab € H.

[Inverse] Let a € H. Since a* = e if and only if (a*)~! = (a=!)¥ = ¢, we have ord(a™!) = ord a.

Prove that for any integer n > 3 the multiplicative group Z3. is not cyclic. (Hint: You may look at the
elements 271 £ 1.)

Solution For n > 3 the elements 2”1 + 1 are distinct modulo 2" and neither of them is the identity
element. Also (2"~ ! 4+1)2 = 2272 £ 2" + 1 = 1 modulo 2", since 2n — 2 > n for n > 3. Thus 2"~ ! — 1
and 2"~! + 1 are distinct elements of Z3, of order 2, i.e., G has two distinct subgroups {1,2"~! — 1} and
{1,271 4 1} of the same size 2. We know that a finite cyclic group of order r has a unique subgroup of
order s for every divisor s of r. Therefore, Z5. cannot be cyclic.

Let R be aring. Two elements a,b € R are called associates, denoted a ~ b, if a = ub for some unit u of
R. Prove that ~ is an equivalence relation on R.

Solution [Reflexive]a =1 x a for all a € R.

[Symmetric] Let a = ub for some unit u. Let v € R be the element with uv = vu = 1 in R. Then v is also
a unit of R, and b = va.

[Transitive] Let ¢ = ub and b = vc for some units u, v (i.e., v ', v~' € R). Thena = (uv)c. Moreover,
(v lu ) (ww) = v Hutu)v = v v = e, i.e., uv is also a unit in R.

Prove that every finite integral domain is a field. (Hint: For a non-zero element a in a finite integral domain
R, look at the function R — R that maps r — ra.)

Solution Let R be a finite integral domain. Take any non-zero a € R. I have to show that a has an inverse
in R. Consider the function ¢ : R — R that maps » — ra. Since R is an integral domain and a # 0,
ra = sa implies r = s, i.e., ¢ is injective. Moreover, R is a finite set. So ¢ is indeed a bijection. Thus there
exists an element r € R such that p(r) = ra = 1.

Let a;, as, as, ... be non-zero ideals of Z satisfying the condition:
apCaCagC---Ca, C---
Prove that there exists n € N such that a, = a,41 = a2 = ---, that is, there cannot exist an infinite

strictly increasing chain of ideals of Z. (Hint: Z is a PID.)

Solution Z is a PID. Let a,, = (a,,) with a,, > 0 for all n € N. Since a,, € (an) C (an+1), it follows that
an 1s an integral multiple of a,,4 1. In particular, a; > a2 > a3 = - -+ = a, - - - . But we cannot have a strictly
decreasing infinite sequence of positive integers. So there exists n € N such that a,, = ap41 = apq2 = - -,
which in turn implies that a,, = a, 411 = ap40 = ---.

Let F' be a finite field. Prove that there exists a polynomial f(z) € F[x] having no roots in F'. (Do not use
the fact that F'[x] contains an irreducible polynomial of every degree n € N.)

Solution Let F' = {ay,as,...,a,}, where n is the size of F'. The polynomial
fl@)=(x—a1)(x —az) - (x —ap)+1

evaluates to 1 when z is substituted by any element of F, i.e., f(x) has no root in F'.

(a) Let G be a finite Abelian group (with identity e¢) in which the number of elements x satisfying ™ = e

is at most n for every n € N. Prove that G is cyclic. (Do not use the structure theorem for finite Abelian
groups.)
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Solution 1 will prove the contrapositive of the given statement, i.e., I will assume that G is not cyclic and
determine an n € N for which ™ = e has more than n solutions in G.

Let m = |G| = p{' - - p¢" with pairwise distinct primes p1, ..., p,, and with r,e; € N. Suppose that for
eachi € {1,...,r} there exists an element a; € G with the property that p;* | orda;. Call m; = ord a;.
Define the element b; = a:»ni/ P Then ord b; = p;*. Since G is Abelian, the element b; - - - b, has order
pit - pSt = m, ie., G is cyclic, a contradiction. Thus there exists at least one i for which p{’ does not
divide ord a for all @ € G. Then n = lem(orda | a € G) is also not divisible by p;* for this particular 1.
Moreover, orda | m for all a € G, i.e., n is a proper divisor of m. In particular, m > n. Finally note that

x™ = e is satisfied by all of the m elements of G.

(b) Prove that any finite subgroup of the multiplicative group F* = F' \ {0} of any field F' (possibly
infinite) is cyclic. (In particular, the multiplicative group of any finite field is cyclic.)

Solution Since F is a field, the polynomial ™ — 1 can have at most n roots in F' and hence in any subset
of F'. The result then follows immediately from Part (a).

Let R be a commutative ring and f(x) = a,2" + ay_12" 1 + -+ + a1 + ag € R[x]. Prove that f(z)
is a unit in R[z] if and only if ap is a unitin R and ay, .. ., a, are nilpotent elements of R. (Recall that an
element a in a ring A is called nilpotent if «* = 0 for some positive integer k.)

Solution [if] Let a’fl = al§2 == aﬁ” = 0 for some positive integers k1, ko, . .., k,. Also let agby = 1.
Take k = n x max(ky, ko, ..., ky). Let g(2) = apz™ + ap_12" '+ +aiz, ie., f(x) = ag+ g(z). We
have g(z)* = 0, since every term in the expansion of g(x)* has a coefficient involving aéi with [; > k; for
atleastonei € {1,2,...,n}. But then

£ [ah ! = ab2g(x) + o 2a(@)? — -+ (~1Fg(@)* ] = (anbo) + (-1 (@)t = 1,

i.e., f(x) has an inverse in R[z].
[only if] Let g(z) = by@™ + by_12™ 1 + - -+ + biz + by € R[z] be the inverse of f(z) in R[x]. Since

f(x)g(x) = 1, equating coefficients of 2%, 2!, ..., 2™T"~1 2™¥" from the two sides yields:
apbp = 1,
apby +a1bg = 0,
apbs + a1by + azby = 0,
an—lbm + anbm—l = 07
anb, = 0.

The first equation shows that ag and by are units. Multiplying the second last equation by a, yields
a2b,,_1 = 0, the third last equation by a? yields a3b,, o = 0, and so on. Finally, we get a1y = 0.
Since by is a unit, it follows that a:{”rl =0, i.e., a, is nilpotent.

It is easy to check that the sum of a nilpotent element and a unit is again a unit. (For example, look at the
proof of the [if] part.) In particular, f(z) + (—a,z™) is a unit. But then using the above argument we can

conclude that a,,— is nilpotent.

Proceeding in this fashion proves that a,,—_2, a,—3s, . . . , a are all nilpotent.
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