
CS21001 Discrete Structures, Autumn 2005

End-semester examination : Solutions

1. Solve the recurrence relation:

T1 = 3,

T2 = 7,

Tn = 2Tn−1 − Tn−2 + 2 for n > 3.

Solution The characteristic equation χ(x) = x2−2x+1 = (x−1)2 = 0 has a single root 1 of multiplicity
2. So the particular solution is of the form Tn = an2 for some constant a. Plugging in this solution in the
recurrence gives

an2 = 2a(n− 1)2 − a(n− 2)2 + 2, i.e., 0 = −2a+ 2, i.e., a = 1.

Thus a general solution for the given recurrence is of the form Tn = 1n(bn + c) + n2 = n2 + bn + c for
some constants b, c. The initial conditions give:

b+ c = 2,

2b+ c = 3.

The solution of this system is b = c = 1. To sum up, the given recurrence has the solution

Tn = n2 + n+ 1 for all n ∈ N .

2. Compute the multiplicative inverse of 17 modulo 71.

Solution Let us compute the extended gcd of 17 and 71:

71 = 4× 17 + 3,

17 = 5× 3 + 2,

3 = 1× 2 + 1,

2 = 2× 1.

It follows that 1 = 3−1×2 = 3−(17−5×3) = 6×3−17 = 6×(71−4×17)−17 = −25×17+6×71.
Therefore, 17−1 = −25 = 71− 25 = 46 modulo 71.

3. Compute the order of 19 in the multiplicative group Z∗32.

Solution φ(32) = φ(25) = 24(2− 1) = 24, i.e., ord 19 is of the form 2i for some i ∈ {0, 1, 2, 3, 4}. Now
191 = 19, 192 = 361 = 9, 194 = 81 = 17, 198 = 289 = 1 modulo 32. Thus the order of 19 in Z∗32 is 8.

4. Compute the monic gcd of the polynomials x4 + 3x3 + 2x2 + 4x+ 1 and x3 + 2x2 + 5x+ 3 in Z7[x].

Solution Polynomial division yields:

x4 + 3x3 + 2x2 + 4x+ 1 = (x+ 1)(x3 + 2x2 + 5x+ 3) + 2x2 + 3x+ 5,

x3 + 2x2 + 5x+ 3 = (4x+ 2)(2x2 + 3x+ 5).

The last non-zero remainder is 2x2 + 3x + 5 = 2(x2 + 5x + 6). Thus the monic gcd of the given two
polynomials is x2 + 5x+ 6.
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5. Let G be an Abelian group. An element a ∈ G is called a torsion element of G if ord a is finite. Prove that
the set of all torsion elements of G is a subgroup of G.

Solution Denote by H the set of all elements of G of finite orders.
[Closure] Let a, b ∈ H , ord a = m and ord b = n. But then (ab)mn = amnbmn = (am)n(bn)m = e, i.e.,
ord(ab) | mn. In particular, ord(ab) is finite, i.e., ab ∈ H .
[Inverse] Let a ∈ H . Since ak = e if and only if (ak)−1 = (a−1)k = e, we have ord(a−1) = ord a.

6. Prove that for any integer n > 3 the multiplicative group Z∗2n is not cyclic. (Hint: You may look at the
elements 2n−1 ± 1.)

Solution For n > 3 the elements 2n−1 ± 1 are distinct modulo 2n and neither of them is the identity
element. Also (2n−1 ± 1)2 = 22n−2 ± 2n + 1 = 1 modulo 2n, since 2n− 2 > n for n > 3. Thus 2n−1 − 1
and 2n−1 + 1 are distinct elements of Z∗2n of order 2, i.e., G has two distinct subgroups {1, 2n−1 − 1} and
{1, 2n−1 + 1} of the same size 2. We know that a finite cyclic group of order r has a unique subgroup of
order s for every divisor s of r. Therefore, Z∗2n cannot be cyclic.

7. Let R be a ring. Two elements a, b ∈ R are called associates, denoted a ∼ b, if a = ub for some unit u of
R. Prove that ∼ is an equivalence relation on R.

Solution [Reflexive] a = 1× a for all a ∈ R.
[Symmetric] Let a = ub for some unit u. Let v ∈ R be the element with uv = vu = 1 in R. Then v is also
a unit of R, and b = va.
[Transitive] Let a = ub and b = vc for some units u, v (i.e., u−1, v−1 ∈ R). Then a = (uv)c. Moreover,
(v−1u−1)(uv) = v−1(u−1u)v = v−1v = e, i.e., uv is also a unit in R.

8. Prove that every finite integral domain is a field. (Hint: For a non-zero element a in a finite integral domain
R, look at the function R→ R that maps r 7→ ra.)

Solution Let R be a finite integral domain. Take any non-zero a ∈ R. I have to show that a has an inverse
in R. Consider the function ϕ : R → R that maps r 7→ ra. Since R is an integral domain and a 6= 0,
ra = sa implies r = s, i.e., ϕ is injective. Moreover, R is a finite set. So ϕ is indeed a bijection. Thus there
exists an element r ∈ R such that ϕ(r) = ra = 1.

9. Let a1, a2, a3, . . . be non-zero ideals of Z satisfying the condition:

a1 ⊆ a2 ⊆ a3 ⊆ · · · ⊆ an ⊆ · · · .

Prove that there exists n ∈ N such that an = an+1 = an+2 = · · · , that is, there cannot exist an infinite
strictly increasing chain of ideals of Z. (Hint: Z is a PID.)

Solution Z is a PID. Let an = 〈an〉 with an > 0 for all n ∈ N. Since an ∈ 〈an〉 ⊆ 〈an+1〉, it follows that
an is an integral multiple of an+1. In particular, a1 > a2 > a3 > · · · > an · · · . But we cannot have a strictly
decreasing infinite sequence of positive integers. So there exists n ∈ N such that an = an+1 = an+2 = · · · ,
which in turn implies that an = an+1 = an+2 = · · · .

10. Let F be a finite field. Prove that there exists a polynomial f(x) ∈ F [x] having no roots in F . (Do not use
the fact that F [x] contains an irreducible polynomial of every degree n ∈ N.)

Solution Let F = {a1, a2, . . . , an}, where n is the size of F . The polynomial

f(x) = (x− a1)(x− a2) · · · (x− an) + 1

evaluates to 1 when x is substituted by any element of F , i.e., f(x) has no root in F .

11. (a) Let G be a finite Abelian group (with identity e) in which the number of elements x satisfying xn = e
is at most n for every n ∈ N. Prove that G is cyclic. (Do not use the structure theorem for finite Abelian
groups.)
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Solution I will prove the contrapositive of the given statement, i.e., I will assume that G is not cyclic and
determine an n ∈ N for which xn = e has more than n solutions in G.
Let m = |G| = pe11 · · · perr with pairwise distinct primes p1, . . . , pr, and with r, ei ∈ N. Suppose that for
each i ∈ {1, . . . , r} there exists an element ai ∈ G with the property that peii | ord ai. Call mi = ord ai.

Define the element bi = a
mi/p

ei
i

i . Then ord bi = peii . Since G is Abelian, the element b1 · · · br has order
pe11 · · · perr = m, i.e., G is cyclic, a contradiction. Thus there exists at least one i for which peii does not
divide ord a for all a ∈ G. Then n = lcm(ord a | a ∈ G) is also not divisible by peii for this particular i.
Moreover, ord a | m for all a ∈ G, i.e., n is a proper divisor of m. In particular, m > n. Finally note that
xn = e is satisfied by all of the m elements of G.

(b) Prove that any finite subgroup of the multiplicative group F ∗ = F \ {0} of any field F (possibly
infinite) is cyclic. (In particular, the multiplicative group of any finite field is cyclic.)

Solution Since F is a field, the polynomial xn − 1 can have at most n roots in F and hence in any subset
of F . The result then follows immediately from Part (a).

12. Let R be a commutative ring and f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ R[x]. Prove that f(x)
is a unit in R[x] if and only if a0 is a unit in R and a1, . . . , an are nilpotent elements of R. (Recall that an
element a in a ring A is called nilpotent if ak = 0 for some positive integer k.)

Solution [if] Let ak1
1 = ak2

2 = · · · = aknn = 0 for some positive integers k1, k2, . . . , kn. Also let a0b0 = 1.
Take k = n×max(k1, k2, . . . , kn). Let g(x) = anx

n + an−1x
n−1 + · · ·+ a1x, i.e., f(x) = a0 + g(x). We

have g(x)k = 0, since every term in the expansion of g(x)k has a coefficient involving alii with li > ki for
at least one i ∈ {1, 2, . . . , n}. But then

f(x)bk0

[
ak−1

0 − ak−2
0 g(x) + ak−2

0 g(x)2 − · · ·+ (−1)k−1g(x)k−1
]

= (a0b0)k + bk0(−1)k−1g(x)k = 1 ,

i.e., f(x) has an inverse in R[x].
[only if] Let g(x) = bmx

m + bm−1x
m−1 + · · · + b1x + b0 ∈ R[x] be the inverse of f(x) in R[x]. Since

f(x)g(x) = 1, equating coefficients of x0, x1, . . . , xm+n−1, xm+n from the two sides yields:

a0b0 = 1,

a0b1 + a1b0 = 0,

a0b2 + a1b1 + a2b0 = 0,

· · ·
an−1bm + anbm−1 = 0,

anbm = 0.

The first equation shows that a0 and b0 are units. Multiplying the second last equation by an yields
a2
nbm−1 = 0, the third last equation by a2

n yields a3
nbm−2 = 0, and so on. Finally, we get am+1

n b0 = 0.
Since b0 is a unit, it follows that am+1

n = 0, i.e., an is nilpotent.
It is easy to check that the sum of a nilpotent element and a unit is again a unit. (For example, look at the
proof of the [if] part.) In particular, f(x) + (−anxn) is a unit. But then using the above argument we can
conclude that an−1 is nilpotent.
Proceeding in this fashion proves that an−2, an−3, . . . , a1 are all nilpotent.
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