CS21001 Discrete Structures, Autumn 2005

Class test 1

Total marks: 25	September 08, 2005	Duration: $1 + \epsilon$ hour
Name:		Roll No:

Answer all questions in the respective spaces provided. Use extra sheets for rough work. Any such extra sheet will not be corrected.

- Which of the following assertions is/are true. Give one-line justifications. No credits will be given without proper reasoning. (2×5)
 - (a) The proposition $\neg p \Rightarrow q \lor r$ is equivalent to the proposition $\neg q \Rightarrow p \lor r$.

(b) The function $f : \mathbb{Q} \to \mathbb{N}$ that maps a/b with gcd(a, b) = 1 to $a^2 + b^2$ is injective.

(c) Let $g : \mathbb{Z} \to \mathbb{Z}$ be a function satisfying g(a+b) = g(a) + g(b) for all $a, b \in \mathbb{Z}$. Then g(0) = 0.

(d) Define a relation R on \mathbb{N} as follows: Let $m, n \in \mathbb{N}$. Write $m = 2^s a$ and $n = 2^t b$ with a, b odd. Define m R n if and only if $s \leq t$. Then R is a partial order on \mathbb{N} .

(e) If A and B are uncountable sets, then $A \cap B$ must be an uncountable set.

- **2.** Define a relation ρ on \mathbb{R} as $a \rho b$ if and only if $a b \in \mathbb{Q}$.
 - (a) Prove that ρ is an equivalence relation on \mathbb{R} .

(5)

- (c) [*Take-home bonus*] Describe an explicit bijection between the sets \mathbb{R} and \mathbb{R}/ρ . (10)
- 3. Use a diagonalization argument to prove that the set of all functions N → N is uncountable. No credit will be given to proofs that are not based on diagonalization arguments. (5)