CS21001 Discrete Structures, Autumn 2005

Class test 1 : Solutions

- Which of the following assertions is/are true. Give one-line justifications. No credits will be given without proper reasoning. (2×5)
 - (a) The proposition $\neg p \Rightarrow q \lor r$ is equivalent to the proposition $\neg q \Rightarrow p \lor r$.

True: $\neg p \Rightarrow q \lor r \equiv \neg(\neg p) \lor q \lor r \equiv p \lor q \lor r \equiv q \lor p \lor r \equiv \neg(\neg q) \lor p \lor r \equiv \neg q \Rightarrow p \lor r$.

(b) The function $f : \mathbb{Q} \to \mathbb{N}$ that maps a/b with gcd(a, b) = 1 to $a^2 + b^2$ is injective.

False: f(2/1) = f(1/2) = 5.

(c) Let $g : \mathbb{Z} \to \mathbb{Z}$ be a function satisfying g(a+b) = g(a) + g(b) for all $a, b \in \mathbb{Z}$. Then g(0) = 0.

True: g(0) = g(0+0) = g(0) + g(0).

(d) Define a relation R on \mathbb{N} as follows: Let $m, n \in \mathbb{N}$. Write $m = 2^s a$ and $n = 2^t b$ with a, b odd. Define m R n if and only if $s \leq t$. Then R is a partial order on \mathbb{N} .

False: 6 R 10 and 10 R 6, but $6 \neq 10$.

(e) If A and B are uncountable sets, then $A \cap B$ must be an uncountable set.

False: Take $A = \{x + i0 \mid x \in \mathbb{R}\}$ and $B = \{0 + iy \mid y \in \mathbb{R}\}$. Then $A \cap B = \{0 + i0\}$ is finite.

2. Define a relation ρ on \mathbb{R} as $a \rho b$ if and only if $a - b \in \mathbb{Q}$.

(a) Prove that ρ is an equivalence relation on \mathbb{R} .

[Reflexive] 0 = 0/1 is a rational number.

[Symmetric] If a - b is rational, then b - a = -(a - b) is rational too.

[Transitive] If a - b and b - c are rational, their sum a - c = (a - b) + (b - c) is again rational.

(5)

Each equivalence class [x] of ρ is of the form $[x] = \{x + r \mid r \in \mathbb{Q}\}$, i.e., each [x] has a bijective correspondence with \mathbb{Q} and so is countable. If the number of equivalence classes is countable too, then the union of all these classes would again be countable. But \mathbb{R} is uncountable.

- (c) [*Take-home bonus*] Describe an explicit bijection between the sets \mathbb{R} and \mathbb{R}/ρ . (10)
- 3. Use a diagonalization argument to prove that the set of all functions N → N is uncountable. No credit will be given to proofs that are not based on diagonalization arguments. (5)

Let A be the set of all functions $\mathbb{N} \to \mathbb{N}$. Assume that A is countable and let $\varphi : \mathbb{N} \to A$ be a bijection. Denote the function $\varphi(n) : \mathbb{N} \to \mathbb{N}$ by φ_n . Define a function $g : \mathbb{N} \to \mathbb{N}$ as

$$g(n) = \varphi_n(n) + 1$$

for all $n \in \mathbb{N}$. Then g differs from each φ_n , since by construction $g(n) \neq \varphi_n(n)$. This implies that φ is not surjective, a contradiction.