
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (End Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 3 1 0 0 3 Subject Name Compilers

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS31003 Compilers, Autumn 2024–2025

End-Semester Test

19–November–2024 09:00am–12:00pm Maximum marks: 100

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Do not write anything on this page.

Questions start from the next page.

1. [Bottom-up parsing]

(a) Let L be the language generated by the following grammar. The terminal symbols are a and b, and the

start symbol is S.

S → aSb | aSbb | b

Demonstrate by an example that this grammar is ambiguous. (3)

Solution The string aabbbb has two different derivations.

S → aSb → aaSbbb → aabbbb

S → aSbb → aaSbbb → aabbbb

The parse trees for these two derivations are certainly different. For example, the root node of the parse tree for

the first derivation has three children, whereas that for the second derivation has four children.

(b) A (canonical) LR(1) parser for an ambiguous grammar must encounter conflicts. We propose the

following alternative grammar for L defined in Part (a), where T is another nonterminal symbol (S continues

to remain the start symbol).

S → aSb | T

T → aT bb | b

Formally justify that this grammar is unambiguous. Specific examples alone will not do. (3)

Solution We have L = {ambn | 0 < m < n 6 2m+ 1}. For ambn ∈ L, write m = k + l and n = k +(2l + 1) for some

k > 0 and l > 0. Indeed, we have l = n−m− 1 > 0, and k = m− l = 2m− n+ 1 > 0. In order to show

that this decomposition is unique, let m = k + l = k′ + l′ and n = k + (2l + 1) = k′ + (2l′ + 1). But then

k− k′ = l′− l = 2(l′− l), so l′ = l and consequently k′ = k.

The start symbol S in the new grammar first generates k a’s and k b’s. It then converts to T which first generates

l a’s and 2l b’s. Eventually, T vanishes by generating the last b. In no other way, sentences can be generated by

this grammar. The uniqueness of k and l as established above guarantees that no other derivation process can

generate this ambn.

Note that the argument that S working first followed by T removes ambiguities is not complete. Consider a

similar language L′ generated by the following grammar.

S → aSb | aSbb | aSbbb | b

This grammar is clearly ambiguous. Let us do the following transformation to this grammar.

S → aSb | T

T → aT bb | U

U → aUbbb | b

This new grammar for L′ fixes the order of the working of the nonterminals S,T,U . But we have:

S → aSb → aT b → aUb → aaUbbbb → aabbbbb

S → T → aT bb → aaT bbbb → aaUbbbb → aabbbbb

The problem here is that 2+2 = 1+3. An argument that this type of situation cannot arise in the grammar of

Part (b) is rather essential.

— Page 1 of 19 —

(c) We now plan to investigate whether the unambiguous grammar of Part (b) is LR(1). In order to do so,

first draw the complete LR(1) automaton for the grammar of Part (b). (10)

accept
$

S

T

b

a

T

b

b

b

S

b

a

b

S

b

b

b

a

T

— Page 2 of 19 —

(d) Conclude from the LR(1) automaton of Part (c) whether the grammar of Part (b) is LR(1). Supply

proper justification. (2)

Solution The states I7 and I14 have shift-reduce conflicts on input symbol b, so the grammar of Part (b) is not LR(1).

(e) Justify whether the grammar of Part (b) is LALR(1). (2)

Solution The shift-reduce conflicts of the LR(1) automaton will continue to stay in the corresponding LALR(1)

automaton. So the grammar is not LALR(1) either. (Whether merging of states introduces new conflicts does

not matter, because the grammar is already non-LALR.)

— Page 3 of 19 —

2. [Syntax-directed translation]

Consider the following grammar for the assignment (to a variable) of arithmetic expressions involving the

operators +, −, ∗, and /. Assume that each operand in the arithmetic expression (the terminal NUM in

the grammar) is a positive integer. ID is another terminal symbol standing for the name of a variable. The

nonterminal symbols are A (assignment statement, start symbol), E (expression), and T (term).

A → ID = E

E → T | T + E | T − E

T → NUM | NUM ∗ T | NUM / T

All of the four operators +, −, ∗, and / are left-to-right associative. The precedence of ∗ and / over + and

− is already taken care of by the grammar.

The grammar symbols have two integer-valued attributes inh (inherited) and val (synthesized). NUM, E,

and A do not use the attribute inh. The nonterminals T and E possess another inherited attribute op (the

preceding operator; its value can be ADD or SUB for E, and MUL or DIV for T). Fill in the blanks in the

following actions of the SDD (syntax-directed definition) to compute A.val. (12)

A → ID = E { A.val = E.val

E.op = ADD

}

E → T { T.inh = (E.op == ADD) ? 1 : −1

T.op = MUL

E.val = T.val

}

E → T +E1 { T.inh = (E.op == ADD) ? 1 : −1

T.op = MUL

E1.op = ADD

E.val = T.val +E1.val

}

E → T −E1 { T.inh = (E.op == ADD) ? 1 : −1

T.op = MUL

E1.op = SUB

E.val = T.val +E1.val

}

— Page 4 of 19 —

T → NUM { if (T.op == MUL)

T.val = T.inh×NUM.val

else

T.val = T.inh / NUM.val

}

T → NUM ∗ T1 { if (T.op == MUL)

T1.inh = T.inh×NUM.val

else

T1.inh = T.inh / NUM.val

T1.op = MUL

T.val = T1.val

}

T → NUM / T1 { if (T.op == MUL)

T1.inh = T.inh×NUM.val

else

T1.inh = T.inh / NUM.val

T1.op = DIV

T.val = T1.val

}

— Page 5 of 19 —

3. [Intermediate-code generation]

In this exercise, we continue with the grammar of Exercise 2, but handle multiple assignment statements. We

plan for incremental code generation in conjunction with bottom-up parsing (like LALR(1) parsing). The

inherited attributes used in Exercise 2 are problematic for this purpose. We use some global data structures

(explained later in detail) to store operands and operators. We also use four marker nonterminals M,N,P,Q.

The revised grammar is given below. Here, L (list of assignments) is the new start symbol. The earlier

nonterminals have the same meanings: A generates an assignment statement, E an expression, and T a term.

Each individual factor of a term is a positive integer (the terminal NUM).

L → A M | A M L

A → ID = E

E → T N | T N + P E | T N − Q E

T → NUM | NUM ∗ T | NUM / T

M → ε

N → ε

P → ε

Q → ε

We plan to store the intermediate code in a table Q of quads. An example is given below. The different

assignments are separated by lines of dashes. The temporaries are numbered as $1, $2, $3, and so on.

Input Table Q of quads

a = 1

b = 1 + 2 + 3

c = 4 * 3 / 2

d = 1 - 2 * 3 * 4 / 5 * 6 / 7 - 8 + 9 * 10

OP ARG1 ARG2 RES

= 1 a

= 1 b

+ b 2 b

+ b 3 b

* 4 3 $1

/ $1 2 $2

= $2 c

* 2 3 $3

* $3 4 $4

/ $4 5 $5

* $5 6 $6

/ $6 7 $7

* 9 10 $8

= 1 d

- d $7 d

- d 8 d

+ d $8 d

Let us look at a term T first. Every production for T reveals a new NUM operand. We store these numbers

in a global integer array factorlist and the corresponding operators (* and /) in a global character array

factorops. Moreover, a global integer variable factorno stores the number of factors in a term. Since we

use bottom-up parsing and the productions of T do not involve marker nonterminals, the operands are stored

in the reverse sequence as they appear in the input. For example, for the term 2 * 3 * 4 / 5 * 6 / 7, we

generate factorlist = (7, 6, 5, 4, 3, 2) and factorops = (/, *, /, *, *). We also have

factorno = 6.

After an instance of T is reduced, the marker N springs into action. It prepares a term for an expression. A

term is a pair (type,value). If factorlist contains a single operand, then type is NUM, and value is the

lexical value of that NUM. If factorlist contains multiple factors, then temporaries are used to generate

the value of the term, so type is TMP, and value is the number of the temporary storing the final value of

— Page 6 of 19 —

the term. The action for the production of N calls a function evalterm() for that purpose. This function

returns the calculated pair (type,value). The action then resets factorno to 0 (for the next term). The

action also stores the returned pair in a global array termlist of pairs. The markers P and Q are used to

store the signs (+ or −) of the terms, in a global character array termsigns. The number of terms in an

expression is stored in the global integer variable termno. For the assignment of d in the above example, we

eventually have termlist = { (NUM,1), (TMP,7), (NUM,8), (TMP,8) }, termsigns = { -, -, + },

and termno = 4. The terms and signs are stored in the same order as they appear in the input.

The action against the production of A generates the code for setting ID to the signed addition of terms in

termlist. The function evalexpr(ID) is called to do that. Finally, the action against the production of the

marker M resets termno to 0 as a preparation for the next assignment instruction.

Fill in the pseudocode below in order to store the intermediate code for L in Q. Assume that a global variable

quadno stores the number of quads stored in Q. We also have a global variable tmpno to store the number

of the temporary last generated.

Only the following productions have non-empty actions. (4)

M is used only to reset termno for the next assignment.

M → ε { termno = 0; }

N is used to store the reference to a term in termlist, and to prepare for the next term.

N → ε { termlist[termno] = evalterm(); ++termno;

factorno = 0;

}

P and Q are used to store the signs of the terms.

P → ε { termsigns[termno] = ’+’ }

Q → ε { termsigns[termno] = ’-’ }

T is used to add a factor and an operator (except for the last factor) to factorlist and factorops.

T → NUM: {

factorlist[factorno] = NUM.val;

++factorno;

}

T → NUM ∗ T1: {

factorlist[factorno] = NUM.val;

factorops[factorno] = ’*’;

++factorno;

}

T → NUM / T1: {

factorlist[factorno] = NUM.val;

factorops[factorno] = ’/’;

++factorno;

}

A → ID = E: { evalexpr(ID); }

— Page 7 of 19 —

Now, write the pseudocode for the function evalterm. This function returns a (type,value) pair. Each quad

in the quad table Q is a 4-tuple (op,arg1,arg2,res).

pair evalterm ()

{

/* If there is only one factor */ (1)

if (factorno == 1) return (NUM,factorlist[0])

/* For multiple factors, temporaries have to be created */

/* The first operation is that of only numeric operands */ (3)

++tmpno;

Q[quadno] = (factorops[factorno-1],factorlist[factorno-1],factorlist[factorno-2],$tmpno);

++quadno;

/* Other operations involve the previous temporary and the next operand */ (3)

for i = (factorno - 3) downto 0 {

++tmpno;

Q[i] = (factorops[i+1],$(tmpno-1),factorlist[i],$tmpno);

++quadno;

}

/* Return a temporary */ (1)

return (TMP,tmpno)

}

Finally, complete the pseudocode for evalexpr.

evalexpr (var)

{

/* Set var to the first term (a NUM or a TMP) */ (3)

if (termlist[0].type == NUM) Q[quadno] = (’=’,termlist[0].value,0,var);

else Q[quadno] = (’=’,$termlist[0].value,0,var);

++quadno;

/* For the remaining terms, add or subtract the next term to var */ (3)

for i = 1 to termno-1 {

if (termlist[i].type == NUM) Q[quadno] = (termsign[i],var,termlist[i].value,var);

else Q[quadno] = (termsign[i],var,$termlist[i].value,var);

++quadno;

}

}

— Page 8 of 19 —

4. [Backpatching]

Consider the following grammar with start symbol S.

S → while B do S | begin L end | A

L → L S | S

A → id = E

E → E + E | E − E

B → E relop E

B → (B)

B → B && B

B → B | | B

B → true

B → false

E → id

Here, relop indicates the relational operators, such as <, >, and so on.

(a) Augment the above grammar with a marker nonterminal M at suitable places of the productions such

that backpatching can be handled. (3)

Solution

— Page 9 of 19 —

(b) Write the semantic actions to design a suitable syntax-directed translator (SDT) which generates three-

address codes for the above grammar. Note that the semantic actions will not generate parse trees, but should

handle backpatching to generate three-address codes. (5)

Solution

— Page 10 of 19 —

(7)(c) Apply your SDT to translate the code snippet to the right, to the

three-address code. Assume that address generation starts from the

address 100, and all labels are instruction numbers. Draw the suitably

annotated parse tree, and clearly show the backpatching steps (the

goto Label statements before and after the backpatching). Clearly

show the annotations of the parse tree, and the consequent generation

of three-address code, and the backpatching steps.

begin

while a > b | | false do

begin

x = y+ z

a = a−b

end

x = y− z

end

Solution

— Page 11 of 19 —

5. [Target-code generation]

(a) Suppose that you have a RISC-like processor with four registers R1, R2, R3, and R4, and machine

instructions (ADD, MUL, SUB) are available for each basic operation OP, in the following form.

OP reg1, reg2, reg3,

Here, reg1 is the register which stores the result after operating on reg2 and reg3. Two dedicated

instructions

LD reg, mem and ST mem, reg

are available for the load and store operations.

(i) Now, consider the assignment d = (a− b)+ b ∗ c+(b+ c). Directly write the corresponding three-

address intermediate code (no need for showing and annotating the parse tree). Assume that these

three-address instructions constitute a single basic block. (1)

Solution t1 = a - b

t2 = b * c

t3 = t1 + t2

t4 = b + c

d = t3 + t4

(ii) From the above intermediate code, generate the target code using the simple target-code generation

algorithm. Assume that all registers are free at the beginning and at the end of the block. Clearly show:

– Machine instructions generated (3)

– States of the Register-Descriptor and the Address-Descriptor tables before and after each

machine instruction generation. (4)

– At each step of the translation, apply the GetReg(I) algorithm to obtain the required registers,

for the generation of the machine code. Suitably show if any spill operation (that is, write back

to memory) is required. Note that GetReg() can access the Register- and Address-Descriptor

tables. Attach your comments on the register assignment after each step. (4)

Solution

— Page 12 of 19 —

(b) A basic block consists of the following four three-address instructions.

I1: x = y + z

I2: p = x + q

I3: m = p + x

I4: y = x + z

Here, I1, I2, I3, I4 are the indices of the three-address instructions. Assume that all the variables are live

on exit. For each instruction Ix in this block, assign the liveness for all the variables, in the table on the next

page. If a variable is live, specify its next use as an instruction Iy (in this block) or as other block (whichever

is applicable). Otherwise, specify not live. (4)

— Page 13 of 19 —

x y z p q m

I1 not live I1 I1 not live I2 not live

I2 I2 not live I4 not live I2 not live

I3 I3 not live I4 I3 other block not live

I4 I4 not live I4 other block other block other block

(c) A basic block consists of the following three-address code.

p = a[i]

a[j] = y

z = a[i]

m = a[i]

x = y + z

t = z + q

r = t + y

First, construct a DAG for this basic block. Next, optimize the DAG. Assume that t is a temporary not used

in any other block, whereas all other variables are live on exit. Show each step of your optimization process.

Finally, rewrite the basic block from the optimized DAG. Show each step in this process. (4)

— Page 14 of 19 —

6. [Global optimization]

(a) Consider the following three-address code.

i = 1

j = 1

t1 = i * 8

t2 = a[t1]

if t2 > 0 goto L2

L1: t3 = i * 8

t4 = b[t3]

t5 = t4

t6 = t2 + t5

L2: j = j + 1

t7 = 8 * j

t8 = n + 5

if t8 > t7 goto L1

(i) Identify the leaders, construct the basic blocks, and construct the flow graph. (2)

i = 1
j = 1
t1 = i * 8
t2 = a[t1]
if t2 > 0 goto B3

t3 = i * 8
t4 = b[t3]
t5 = t4
t6 = t2 + t5

j = j + 1
t7 = 8 * j
t8 = n + 5
if t8 > t7 goto B2

B1

B2

B3

— Page 15 of 19 —

(ii) Assume that the temporaries t1 through t8 are used nowhere else outside the block. Step by step

apply various intermediate-code optimization techniques to optimize the basic blocks globally. Show

each optimization step clearly, specify the name of the technique, and show the final optimized basic

blocks. (You do not have to optimize the goto’s.) (3)

Solution Global common subexpression: i * 8 is used twice.

Constant folding: i always stays 1, so both the occurrences of i * 8 can be replaced by 8, and t1 and t3 do

not need to be computed at all (dead-code elimination).

Dead-code elimination: The entire block B2 can be eliminated, because it computes some temporaries that are

used nowhere else.

Code motion: t8 = n + 5 remains constants in all the loops, and can be taken out of the loop and moved to

block B1.

Strength reduction: t7 can be computed as t7 = t7 + 8. The initialization t7 = 8 is introduced in block

B1.

Note that the initialization and increments of j cannot be eliminated because j may be live on exit. However,

the goto B3 statement can also be eliminated, because irrespective of the condition t2 > 0, control will go to

block B3.

The optimized flow graph is given below.

t2 = a[8]
t8 = n + 5
t7 = 8
j = 1
i = 1B1

j = j + 1
t7 = t7 + 8

B3

if t8 > t7 goto B3

if t2 > 0 goto B3

— Page 16 of 19 —

(b) Consider the flow graph given below.

d2 : b = 2

d3 : c = a _ b

d4 : d = a

d6 : e = c _ a

5 : b = a + bd

d9 : b = d

d8 : a = b d*

d7 : d = b a*

d1 : a = 1

3

B1

B2

B4

B5

B

ENTRY

EXIT

Here, we focus on the reaching-definition problem for data-flow analysis. The definitions are shown as di.

(i) Write down the GEN[B] and the KILL[B] sets for each basic block B, in the following table. (2)

GEN[B1] = {d1,d2} KILL[B1] = {d5,d8,d9}

GEN[B2] = {d3,d4} KILL[B2] = {d7}

GEN[B3] = {d7} KILL[B3] = {d4}

GEN[B4] = {d5,d6} KILL[B4] = {d2,d9}

GEN[B5] = {d8,d9} KILL[B5] = {d1,d2,d5}

(ii) Write the two functions for each block B, to compute the data-flow values IN[B] and OUT[B]. (2)

IN[B1] = OUT(ENTRY)

OUT[B1] = {d1,d2}∪
(

IN(B1)−{d5,d8,d9}
)

IN[B2] = OUT(B1) ∪ OUT(B4)

OUT[B2] = {d3,d4}∪
(

IN(B2)−{d7}
)

— Page 17 of 19 —

IN[B3] = OUT(B1)

OUT[B3] = {d7}∪
(

IN(B3)−{d4}
)

IN[B4] = OUT(B2)

OUT[B4] = {d5,d6}∪
(

IN(B4)−{d2,d9}
)

IN[B5] = OUT(B3) ∪ OUT(B4)

OUT[B5] = {d8,d9}∪
(

IN(B5)−{d1,d2,d5}
)

(iii) Use these functions to compute the IN[B] and OUT[B] for each block B. In this computation, strictly

follow the order B1,B2,B3,B4,B5 to compute the data-flow values. Show the outcome of the first two

iterations. Use the bitmap representation to specify and update the values of IN and OUT.

Initialization:

OUT[ENTRY] = OUT[B1] = OUT[B2] = OUT[B3] = OUT[B4] = OUT[B5] = 000000000

Iteration 1: (3)

IN[B1] = OUT[ENTRY] = 000000000

OUT[B1] = 110000000+(000000000−000010011) = 110000000

IN[B2] = OUT[B1] ∪ OUT[B4] = 110000000+000000000 = 110000000

OUT[B2] = 001100000+(110000000−000000100) = 111100000

IN[B3] = OUT[B1] = 110000000

OUT[B3] = 000000100+(110000000−00010000) = 110000100

— Page 18 of 19 —

IN[B4] = OUT[B2] = 111100000

OUT[B4] = 000011000+(111100000−010000001) = 101111000

IN[B5] = OUT[B3] ∪ OUT[B4] = 110000100+101111000=111111100

OUT[B5] = 000000011+(111111100−110010000) = 001101111

Iteration 2: (3)

IN[B1] = OUT[ENTRY] = 000000000

OUT[B1] = 110000000+(000000000−000010011) = 110000000

IN[B2] = OUT[B1] ∪ OUT[B4] = 110000000+101111000 = 111111000

OUT[B2] = 001100000+(111111000−000000100) = 111111000

IN[B3] = OUT[B1] = 110000000

OUT[B3] = 000000100+(110000000−00010000) = 110000100

IN[B4] = OUT[B2] = 111111000

OUT[B4] = 000011000+(111111000−010000001) = 101111000

IN[B5] = OUT[B3] ∪ OUT[B4] = 110000100+101111000=111111100

OUT[B5] = 000000011+(111111100−110010000) = 001101111

— Page 19 of 19 —

For Rough Work

— Extra Page 20 —

For Rough Work

— Extra Page 21 —

For Rough Work

— Extra Page 22 —

