
Computer Science and Engineering Department
Indian Institute of Technology Kharagpur

Compilers Laboratory: CS39003
3rd Year CSE: 5th Semester

TinyC, Part 3: Machine Independent Code Generator for tinyC Marks: 100

Assign Date: October 14, 2024 Submit Date: 23:59, October 30, 2024

1 Preamble – tinyC

The Lexical Grammar (TinyC, Part 1) and the Phase Structure Grammar (TinyC,

Part 2) for tinyC have already been defined as subsets of the C language specification

from the International Standard ISO/IEC 9899:1999 (E).

In this assignment you will write the semantic actions in Bison to translate a tinyC

program into an array of 3-address quad’s, a supporting symbol table, and other auxil-

iary data structures. The translation should be machine-independent, yet it has to carry

enough information so that you can later target it to a specific architecture (x86 / IA-32

/ x86-64).

2 Scope of Machine-Independent Translation

Focus on the following from the different phases to write actions for translation.

2.1 Expression Phase

Support all arithmetic, shift, relational, bit, logical (boolean), and assignment expres-

sions excluding:

1. sizeof operator

2. Comma (,) operator

3. Compound assignment operators

*= /= %= += -= <<= >>= &= ^= |=

Also support simple assignment operator (=)

4. Structure component expression

2.2 Declarations Phase

Support for declarations should be provided as follows:

1. Simple variable, pointer, array, and function declarations should be supported.

For example, the following would be translated:

float d = 2.3;

int i, w[10];

int a = 4, *p, b;

void func(int i, float d);

char c;

2. Consider only void, char, int, and float type-specifiers. As specified in C, char

and int are to be taken as signed.

For computation of offset and storage mapping of variables, assume the follow-

ing sizes1 (in bytes) of types:

1Using hard-coded sizes for types does not keep the code machine-independent. Hence you may want to

use constants like size of char, size of int, size of float, and size of pointer for sizes that can be defined

at the time of machine-dependent targeting.

1



Type Size Remarks

void undefined

char 1

int 4

float 8

void * 4 All pointers have same size

It may also help to support an implicit bool (boolean) type with constants 1

(TRUE) and 0 (FALSE). This type may be inferred for a logical expression or

for an int expression in logical context. Note that the users cannot define, load,

or store variables of bool type explicitly, hence it is not storable and does not

have a size.

3. Initialization of arrays may be skipped.

4. storage-class-specifier, enum-specifier, type-qualifier, and function-specifier

may be skipped.

5. Function declaration with only parameter type list may be skipped. Hence,

void func(int i, float d);

should be supported, whereas

void func(int, float);

may not be.

2.3 Statement Phase

Support all statements excluding:

1. Declaration within for.

2. All labelled statements (labeled-statement).

3. switch in selection-statement.

4. All Jump statements (jump-statement) except return.

2.4 External Definitions Phase

Support function definitions and skip external declarations.

3 The 3-Address Code

Use the 3-Address Code specification as discussed in the class. For easy reference the

same is reproduced here. Every 3-Address Code:

• Uses only up to 3 addresses.

• Is represented by a quad comprising – opcode, argument 1, argument 2, and

result; where argument 2 is optional.

3.1 Address Types

• Name: Source program names appear as addresses in 3-Address Codes.

• Constant: Many different types and their (implicit) conversions are allowed as

deemed addresses.

• Compiler-Generated Temporary: Create a distinct name each time a temporary

is needed – good for optimization.

2



3.2 Instruction Types

For Addresses x, y, z, and Label L

• Binary Assignment Instruction: For a binary op (including arithmetic, shift, re-

lational, bit, or logical operators):

x = y op z

• Unary Assignment Instruction: For a unary operator op (including unary minus

or plus, logical negation, bit, and conversion operators):

x = op y

• Copy Assignment Instruction:

x = y

• Unconditional Jump:

goto L

• Conditional Jump:

– Value-based:

if x goto L

ifFalse x goto L

– Comparison-based: For a relational operator op (including <, >, ==, ! =,

≤, ≥):

if x relop y goto L

• Procedure Call: A procedure call p(x1, x2, ..., xN) having N ≥ 0 parame-

ters is coded as (for addresses p, x1, x2, and xN):

param x1

param x2

...

param xN

y = call p, N

Note that N is not redundant as procedure calls can be nested.

• Return Value: Returning a return value and / or assigning it is optional. If there

is a return value v it is returned from the procedure p as:

return v

• Indexed Copy Instructions:

x = y[z]

x[z] = y

• Address and Pointer Assignment Instructions:

x = &y

x = *y

*x = y

3



4 Design of the Translator

Lexer and Parser Use the Flex and Bison specifications (if required you may correct your speci-

fications) you had developed in Parts 1 and 2 respectively, and write semantic

actions for translating the subset of tinyC as specified in Section 2. Note that

many grammar rules of your tinyC parser may not have any action or may just

have propagate-only actions. Also, some of the lexical tokens may not be used.

Augmentation Augment the grammar rules with markers and add new grammar rules as needed

for the intended semantic actions. Justify your augmentation decisions within

comments of the rules.

Attributes Design the attributes for every grammar symbol (both terminal and non-terminal).

List the attributes against symbols (with brief justification) in comment on the top

of your Bison specification file. Highlight the inherited attributes, if any.

Symbol Table Use symbol tables for user-defined (including arrays and pointers) variables,

temporary variables and functions.

Name Type Initial Size Offset Nested

Value Table

... ... ... ... ... ...

For example, for

float d = 2.3;

int i, w[10];

int a = 4, *p, b;

void func(int i, float d);

char c;

the Symbol Tables will look like:

ST(global) This is the Symbol Table for global symbols

Name Type Initial Size Offset Nested

Value Table

d float 2.3 8 0 null

i int null 4 8 null

w array(10, int) null 40 12 null

a int 4 4 52 null

p ptr(int) null 4 56 null

b int null 4 60 null

func function null 0 64 ptr-to-ST(func)

c char null 1 64 null

ST(func) This is the Symbol Table for function func

Name Type Initial Size Offset Nested

Value Table

i int null 4 0 null

d float null 8 4 null

retVal void null 0 12 null

The Symbol Tables may support the following methods:

lookup(...) A method to lookup an id (given its name or lexeme) in

the Symbol Table. If the id exists, the entry is returned,

otherwise a new entry is created.

gentemp(...) A static method to generate a new temporary, insert it to

the Symbol Table, and return a pointer to the entry.

update(...) A method to update different fields of an existing entry.

print(...) A method to print the Symbol Table in a suitable format.

Note:

4



• The fields and the methods are indicative. You may change their name,

functionality and also add other fields and / or methods that you may need.

• It should be easy to extend the Symbol Table as further features are sup-

ported and more functionality is added.

• The global symbol table is unique.

• Every function will have a symbol table of its parameters and automatic

variables. This symbol table will be nested in the global symbol table.

• Symbol definitions within blocks are naturally carried in separate symbol

tables. Each such table will be nested in the symbol table of the enclosing

scope. This will give rise to an implicit stack of symbol tables (global one

being the bottom-most) the while symbols are processed during translation.

The search for a symbol starts from the top-most (current) table and goes

down the stack up to the global table.

Quad Array The array to store the 3-address quad’s. Index of a quad in the array is the

address of the 3-address code. The quad array will have the following fields

(having usual meanings)

op arg 1 arg 2 result

... ... ... ...

Note:

• arg 1 and / or arg 2 may be a variable (address) or a constant.

• result is variable (address) only.

• arg 2 may be null.

For example, if

int i = 10, a[10], v = 5;

...

do i = i - 1; while (a[i] < v);

translates to

100: t1 = i - 1

101: i = t1

102: t2 = i * 4

103: t3 = a[t2]

104: if t3 < v goto 100

the quad’s are represented as:

Index op arg 1 arg 2 result

... ... ... ... ...

100 – i 1 t1

101 = t1 i

102 * i 4 t2

103 =[] a t2 t3

104 < t3 v 100

The Quad Array may support the following methods:

emit(...) An overloaded static method to add a (newly generated)

quad of the form: result = arg1 op arg2 where op

usually is a binary operator. If arg2 is missing, op is

unary. If op also is missing, this is a copy instruction.

print(...) A method to print the quad array in a suitable format.

For example the above state of the array may be printed (with the symbol infor-

mation) as:

5



void main()

{

int i = 10;

int a[10];

int v = 5;

int t1;

int t2;

int t3;

L100: t1 = i - 1;

L101: i = t1;

L102: t2 = i * 4;

L103: t3 = a[t2];

L104: if (t3 < v) goto L100;

}

Note:

• The fields and the methods are indicative. You may change their name,

functionality and also add other fields and / or methods that you may need.

Global Functions Following (or similar) global functions and more may be needed to implement

the semantic actions:

makelist(i)

A global function to create a new list containing only i, an index into

the array of quad’s, and to return a pointer to the newly created list.

merge(p1, p2)

A global function to concatenate two lists pointed to by p1 and p2 and

to return a pointer to the concatenated list.

backpatch(p, i)

A global function to insert i as the target label for each of the quad’s

on the list pointed to by p.

typecheck(E1, E2)

A global function to check if E1 and E2 have same types

(that is, if <type of E1> = <type of E2>). If not, then

to check if they have compatible types (that is, one can

be converted to the other), to use an appropriate con-

version function conv<type of E1>2<type of E2>(E) or

conv<type of E2>2<type of E1>(E) and to make the neces-

sary changes in the Symbol Table entries. If not, that is, they are of

incompatible types, to throw an exception during translation.

conv<type1>2<type2>(E)

A global function to converta an expression E from its current type

type1 to target type type2, to adjust the attributes of E accordingly,

and finally to generate additional codes, if needed.

aIt is assumed that this function is called from typecheck(E1, E2) and hence the conversion

is possible.

Naturally, these are indicative and should be adopted as needed. For every func-

tion used clearly explain the input, the output, the algorithm, and the purpose

with possible use at the top of the function.

6



5 The Assignment

1. Write a 3-Address Code translator based on the Flex and Bison specifications of

tinyC. Assume that the input tinyC file is lexically, syntactically, and semanti-

cally correct. Hence no error handling and / or recovery is expected.

2. Prepare a Makefile to compile and test the project.

3. Prepare test input files TinyC3 rolls test<number>.c to test the semantic ac-

tions and generate the translation output in TinyC3 rolls quads<number>.out.

4. Name your files as follows:

File Naming

Flex Specification TinyC3 rolls.l

Bison Specification TinyC3 rolls.y

Data Structures (Class Definitions) and

Global Function Prototypes

TinyC3 rolls translator.h

Data Structures, Function Implementations

and Translator main()

TinyC3 rolls translator.cxx

Test Inputs TinyC3 rolls test<number>.c

Test Outputs TinyC3 rolls quads<number>.out

5. Prepare a tar-archive with the name TinyC3 rolls.tar containing all the files and

upload to Moodle.

6 Credits

Design of Grammar Augmentations: 5

Explain the augmentations in the production rules in Bison

Design of Attributes: 5

Explain the attributes in the respective %token and %type in Bison

Design and Implementation of Symbol Table and

Supporting Data Structures: 10

Explain with class definition of ST and other Data Structures

Design and Implementation of Quad Array: 5

Explain with class definition of QA

Design and Implementation of Global Functions: 10

Explain i/p, o/p, algorithm and purpose for every function

Design and Implementation of Semantic Actions:

Explain with every action in Bison

Expression Phase: 15

Correct handling of operators, type checking and conversions

Declaration Phase: 10

Handling of variable declarations, function definitions in ST

Statement Phase: 15

Correct handling of statements

External Definition Phase: 5

Correct handling of function definitions

Design of Test files and correctness of outputs: 20

Test at least 5 i/p files covering all rules

Shortcoming and / or bugs, if any, should be highlighted

7


