
CS60094 Computational Number Theory, Spring 2017–2018

Mid-Semester Test

23–February–2018 CSE-107, 09:00am–11:00am Maximum marks: 40

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Let fn denote the n-th Fibonacci number. Prove that the smallest positive integers on which the Euclidean

GCD algorithm requires n steps are fn+2 and fn+1. In other words, if gcd(a,b) with a > b > 0 takes n steps,

then a > fn+2, and b > fn+1. (4)

Solution We can prove this by induction on n. Base case is when n = 1, so a is a multiple of b. The minimum for such a

and b is when a = 2 = f3, and b = 1 = f2.

Assuming that the hypothesis holds for n=m, we show it holds for n=m+1. Let a= qb+r1. Now, if gcd(a,b)
takes n+ 1 steps, gcd(b,r1) takes n steps. Thus according to induction hypothesis, b > fn+2 and r1 > fn+1.

Since q > 1, we have a > b+ r1 > fn+2 + fn+1 = fn+3. This completes the inductive step.

2. Solve the following parts with appropriate justifications. Here, a,b,c are arbitrary integers.

(a) Prove that if a|b and b|c, then a|c. (1)

Solution There exist integers λ and µ such that b = λa, c = µb. But then c = µλa.

(b) Prove that if a|(bc) and gcd(a,b) = 1, then a|c. (2)

Solution There exist integers λ and µ such that 1 = λa+µb. Hence, c = λac+µbc. Since a divides the RHS, it must

divide c.

— Page 1 of 5 —



(c) Using the rules of Jacobi-symbol computation, show that the congruence x2 ≡ 286 (mod 563) is not

solvable. (3)

Solution We have

(

286

563

)

=

(

2

563

)(

143

563

)

=−

(

143

563

)

=

(

563

143

)

=

(

−9

143

)

=−

(

32

143

)

=−1.

3. Use Hensel’s lifting to prove the following: If a is a quadratic residue of an odd prime p, then it is also a

quadratic residue of pk for any positive integer k. (3)

Solution Since a is a quadratic residue of p, the congruence f (x) = x2 −a ≡ 0 (mod p) has a solution say x0, 0 < x0 < p.

Now, f ′(x) = 2x, and f ′(x0) = 2x0 6≡ 0 (mod p), as p is an odd prime. Hence, we can (uniquely) lift x0 to p2,

and then to p3, and so on to pk for any integer k > 2.

— Page 2 of 5 —



4. The Discrete Fourier Transform (DFT) requires the use of complex numbers, which can result in a loss of

precision due to round-off errors. For some problems, the answer is known to contain only integers, and it is

desirable to utilize a variant of the DFT, based on modular arithmetic in order to guarantee that the answer

is computed exactly. Let n be the number of points, of which the DFT is taken. In this exercise, we develop

a strategy where the modulus p is of length O(lgn). Answer the following parts in this context.

(a) Suppose that we search for the smallest k ∈ N such that p = kn+ 1 is prime. Give a simple heuristic

argument why we expect k to be O(lgn). How does the expected length of p compare to the length of n? (3)

Solution From the prime number theorem, between 1 and N there are about N/ lnN prime numbers. Hence, the

probability that a random number from 1 and N is prime is
(N/ lnN)

N
= 1

lnN
. If N = n lnn, then this probability is

about 1
lnn

.

Hence, if we vary k from 1 to O(lgn), then in the desired form of one more than a multiple of n, we would

expect one number to be prime.

The bit length of p is ≈ lgk+ lgn. We expect k = O(lgn), so the expected bit length of p is lgn+O(lg lgn).

(b) Let g be a generator of Z∗
p, and let w ≡ gk (mod p). State the DFT operation modulo p using w. (2)

Solution Since wn ≡ gkn ≡ gp−1 ≡ 1 (mod p), we can simply replace the complex n-th root of unity by this value to

obtain the formulation.

(c) Let p and w be supplied as inputs to the DFT algorithm. Show that the DFT takes time O(n lgn), under

the assumption that operations on words of O(lgn) bits take unit time. (2)

Solution Consider the numbers 1,w,w2, . . . ,wn/2,wn/2+1, . . . ,wn−1 modulo p. We have wn/2 ≡ −1 (mod p), wn/2+1 ≡
−w (mod p), and so on. Thus, we can simply apply the recursion to evaluate the input polynomial at these n

points. Hence, the recurrence is T (n) = 2T (n/2)+O(n). This implies T (n) = O(n lgn).

— Page 3 of 5 —



5. (a) Prove that the polynomial f (x) = x3 +2x+2 is irreducible over F3. (2)

Solution Since deg( f ) = 3, the polynomial must have a root in F3 if it is reducible. But f (0)≡ f (1)≡ f (2)≡ 2 (mod 3).

(b) Define F27 =F33 =F3(θ), where f (θ)= θ 3+2θ +2= 0. Take the element γ = θ +2∈F27. Determine

whether γ is a primitive element of F27. (4)

Solution Since |F∗
27|= 26 = 2×13. Also γ 6= 1. So it suffices to compute γ2 and γ13 to determine whether γ is primitive.

We have θ 3 +2θ +2 = 0, that is, θ 3 = θ +1. We then have:

γ = θ +2,

γ2 = θ 2 +θ +1,

γ3 = θ 3 +2 = θ ,

γ9 = θ 3 = θ +1,

γ12 = γ9 × γ3 = (θ +1)θ = θ 2 +θ ,

γ13 = γ12 × γ = (θ 2 +θ)(θ +2) = θ 3 +2θ = 1.

Since γ13 = 1, γ is not a primitive element of F27.

(c) Determine whether the element δ = θ 2 ∈ F27 is a normal element of F27. (4)

Solution We have

δ = θ 2,

δ 3 = θ 6 = (θ +1)2 = θ 2 +2θ +1,

δ 9 = θ 6 +2θ 3 +1 = (θ 2 +2θ +1)+2(θ +1)+1 = θ 2 +θ +1,

that is,





δ
δ 3

δ 9



=





0 0 1

1 2 1

1 1 1









1

θ
θ 2



 .

The transformation matrix has non-zero determinant 1−2 ≡ 2 (mod 3), so δ is a normal element of F27.

— Page 4 of 5 —



6. Take an extension field Fq = Fpn for a prime p and for n > 2. Suppose that p is small, so the basic arithmetic

operations in Fp can be assumed to run in O(1) time. Let θ0,θ1,θ2, . . . ,θn−1 constitute an arbitrary Fp-basis

of Fq. For all i, j ∈ {0,1,2, . . . ,n−1}, write

θiθ j =
n−1

∑
k=0

ti, j,kθk

with ti, j,k ∈ Fp. Suppose that the n3 elements ti, j,k are precomputed and stored. Finally, let

1 =
n−1

∑
k=0

ckθk,

and suppose that the n elements ck ∈ Fp are also precomputed and stored.

Let α = a0θ0 +a1θ1 +a2θ2 + · · ·+an−1θn−1, ai ∈ Fp, be an element of F∗
q expressed in the given basis. We

want to compute the inverse of α again in the given basis, that is, the element β = b0θ0 + b1θ1 + b2θ2 +
· · ·+ bn−1θn−1 ∈ F

∗
q with αβ = 1. Fermat’s little theorem implies β = αq−2. Since each multiplication in

Fq can be done by table lookup in O(n3) time, and the exponentiation can be done by a square-and-multiply

algorithm having log2(q−2)≈ n log2 p iterations, the overall running time is O(n4). Propose an O(n3)-time

algorithm to compute β = α−1. (10)

Solution We use linear algebra to solve this problem. We need to determine the unknown quantities b j ∈ Fp.

1. Since αβ = 1, we have

n−1

∑
k=0

ckθk =

(

n−1

∑
i=0

aiθi

)(

n−1

∑
j=0

b jθ j

)

=
n−1

∑
i=0

n−1

∑
j=0

aib jθiθ j =
n−1

∑
i=0

n−1

∑
j=0

(

aib j

n−1

∑
k=0

ti, j,kθk

)

=
n−1

∑
k=0

(

n−1

∑
i=0

n−1

∑
j=0

aib jti, j,k

)

θk =
n−1

∑
k=0

[

n−1

∑
j=0

(

n−1

∑
i=0

aiti, j,k

)

b j

]

θk

For all j,k ∈ {0,1,2, . . . ,n−1}, we compute s j,k =
n−1

∑
i=0

aiti, j,k.

2. We have the following set of n linear equations in the variables b0,b1,b2, . . . ,bn−1:

n=1

∑
j=0

s j,kb j = ck

for k = 0,1,2, . . . ,n−1. We solve the system modulo p to obtain b0,b1,b2, . . . ,bn−1.

Step 1 requires the computation of n2 elements s j,k of Fp, each involving an n-fold sum over Fp, so this step

takes a total of O(n3) time. Finally, the n× n linear system of equations over Fp can be solved in Step 2 by

Gaussian elimination using O(n3) operations in Fp.

— Page 5 of 5 —



FOR LEFTOVER ANSWERS

6



FOR LEFTOVER ANSWERS OR ROUGH WORK

7



FOR ROUGH WORK

8


