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CS60094 Computational Number Theory, Spring 2017–2018

End-Semester Test

25–April–2018 CSE-107, 09:00am–12:00noon Maximum marks: 80

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.

1. Consider the conic section defined by C : f (X ,Y ) = 0, where f (X ,Y ) = X2− 2XY − 3Y 2 + 4X − 4Y − 5.

Treat C as a real curve (that is, let X ,Y be real-valued variables).

(a) Prove that C is smooth at all finite rational points on the curve. (4)

Solution For the curve to have a singularity at some finite rational point (X ,Y ) on C, both the partial derivatives
∂ f

∂X
and

∂ f

∂Y
must vanish simultaneously at that point. We have

∂ f

∂X
= 2X−2Y +4,

∂ f

∂Y
= −2X−6Y −4.

Thus
∂ f

∂X
= ∂ f

∂Y
= 0 implies that

X−Y = −2,

X +3Y = −2.

Solving these two linear equations gives X =−2 and Y = 0. But

f (−2,0) = 4−0−0−8−0−5 =−9 6= 0,

that is, (−2,0) is not a finite rational point on C.

(b) Find all the points at infinity on C. (4)

Solution The homogenization of the curve is

f (h)(X ,Y,Z) = X2−2XY −3Y 2 +4XZ−4Y Z−5Z2 = 0.

Putting Z = 0 gives

X2−2XY −3Y 2 = 0, that is,

(X +Y )(X−3Y ) = 0, that is,

X = −Y,3Y.

Therefore, C contains two points at infinity: [−1,1,0] and [3,1,0].



(c) Let the projective curve corresponding to C be C(h) : f (h)(X ,Y,Z) = 0. C(h) is smooth at a point at

infinity on the curve if the three partial derivatives
∂ f (h)

∂X
,

∂ f (h)

∂Y
, and

∂ f (h)

∂Z
do not vanish simultaneously at the

point at infinity. Prove that the given curve is smooth at its points at infinity. (4)

Solution We have

f (h)(X ,Y,Z) = X2−2XY −3Y 2 +4XZ−4Y Z−5Z2,

so

∂ f (h)

∂X
= 2X −2Y +4Z,

∂ f (h)

∂Y
= −2X−6Y −4Z,

∂ f (h)

∂Z
= 4X −4Y −10Z.

The simultaneous vanishing of these three partial derivatives gives the system

X−Y +2Z = 0,

X +3Y +2Z = 0,

2x−2Y −5Z = 0.

The only solution of this system is X = Y = Z = 0, but [0,0,0] is not a point in the projective plane (let alone

being a point at infinity on C).
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(d) Deduce that by a suitable transformation (that is, renaming) of the coordinates as

(X ,Y )← (αX +βY + γ ,α ′X +β ′Y + γ ′),

where α ,β ,γ ,α ′,β ′,γ ′ ∈ R, the given curve C can be converted to the hyperbola X2−Y 2 = 1. (4)

Solution We have

X2−2XY −3Y 2 +4X−4Y −5 = (X−Y )2−4Y 2 +4(X−Y )−5.

The coordinate transformation

(X ,Y )← (X−Y,Y )

changes the equation of the curve to X2 − 4Y 2 + 4X − 5 = 0, that is, (X2 + 4X + 4)− 4Y 2 = 9, that is,

(X +2)2− (2Y )2 = 32, that is,

(

X +2

3

)2

−
(

2Y

3

)2

= 1.

So we need another coordinate transformation

(X ,Y )← ((X +2)/3,(2Y )/3).

Combining together the two coordinate transformations gives

(X ,Y )← ((X−Y +2)/3,(2Y )/3)),

that is,

α = 1/3, β =−1/3, γ = 2/3, α ′ = 0, β ′ = 2/3, and γ ′ = 0.
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2. Consider the elliptic curve E : Y 2 = X3−X +1 defined over the finite field F11.

(a) Find all the finite F11-rational points on E. Show your calculations. (6)

Solution All the squares modulo 11 are:

02 ≡ 0 (mod 11)
12 ≡ 102 ≡ 1 (mod 11)
22 ≡ 92 ≡ 4 (mod 11)
32 ≡ 82 ≡ 9 (mod 11)
42 ≡ 72 ≡ 5 (mod 11)
52 ≡ 62 ≡ 3 (mod 11)

Now, we plug in different values of X (mod 11), and try to solve Y 2 ≡ X3−X + 1 (mod 11). The following

table summarizes these calculations.

X X3−X +1 (mod 11) Number of solutions Finite points

0 1 2 (0,1),(0,10)
1 1 2 (1,1),(1,10)
2 7 0

3 3 2 (3,5),(3,6)
4 6 0

5 0 1 (5,0)
6 2 0

7 7 0

8 10 0

9 6 0

10 1 2 (10,1),(10,10)
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(b) What is the size of the group E(F11)? (2)

Solution By Part (a), there are nine finite rational points on E. Considering the point at infinity, we have

|E(F11)|= 9+1 = 10.

(c) E is naturally defined over the extension field F112 = F121. Using Weil’s theorem, determine the size

of the group E(F112) = E(F121). Show your calculations. (4)

Solution Let t be the trace of Frobenius at p = 11. We have

10 = |E(Fp)|= p+1− t = 12− t,

that is, t = 2. The two solutions of the quadratic equation

W 2− tW + p =W 2−2W +11 = 0

are α = 1+ i
√

10 and β = 1− i
√

10. Therefore the trace of Frobenius at p2 = 112 is

α2 +β 2 = 2× (1−10) =−18,

that is,

|E(Fp2)|= 112 +1− (−18) = 140.
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3. In this exercise, we factor n = 3869 using Dixon’s method. Complete the details of the following steps in a

possible run of Dixon’s method. Take the factor base B = {2,3,5,7}.
(a) [Relation generation] The following six relations are generated for randomly chosen values of a∈Zn.

Compute a2 (mod n), and write its factorization over B, for the given values of a (two cases are shown). (4)

a a2 (mod n)

752 630 = 2×32×5×7

2136 945 = 33×5×7

2007 420 = 22×3×5×7

880 600 = 23×3×52

3032 280 = 23×5×7

1432 54 = 2×33

(b) [System generation] Take Z2-valued variables u,v,w,x,y,z. Raise the six relations respectively to the

u,v,w,x,y,z-th powers, and multiply. Write down the 4×6 linear system of congruences obtained modulo 2. (4)

Solution The exponents of 2,3,5,7 in the selected product of relations are u+ 2w+ 3x+ 3y+ z, 2u+ 3v+w+ x+ 3z,

u+ v+w+2x+ y, and u+ v+w+ y, respectively. All these exponents are desired to be even, so we have the

following system of linear equations modulo 2.

u+ x+ y+ z = 0,

v+w+ x+ z = 0,

u+ v+w+ y = 0,

u+ v+w+ y = 0,

that is,







1 0 0 1 1 1

0 1 1 1 0 1

1 1 1 0 1 0

1 1 1 0 1 0





















u

v

w

x

y

z















=















0

0

0

0

0

0















.

(c) [Linear algebra] Apply Gaussian elimination to the coefficient matrix M of the linear system from

Part (b), in order to identify the free variables. Express the dependent variables in terms of the free variables.

Finally, write the column vector (u v w x y z) t
as a linear combination of the free variables. The

coefficients of the free variables constitute a basis of the null space of M. (4)

Solution We convert the coefficient matrix to the row-reduced echelon form. At every step, the pivot is highlighted.
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Solution









1 0 0 1 1 1

0 1 1 1 0 1

1 1 1 0 1 0

1 1 1 0 1 0









∼







1 0 0 1 1 1

0 1 1 1 0 1

0 1 1 1 0 1

0 1 1 1 0 1






∼







1 0 0 1 1 1

0 1 1 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0







It follows that w,x,y,z are free variables, and the dependent variables are u = x+ y+ z and v = w+ x+ z. We

therefore have
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z.

(d) [Split n by a non-trivial Fermat congruence] Find a non-zero combination of the free variables, that

splits n. Work out, in the rough space, a combination that works, and show the corresponding computations. (4)

Solution Here, we get the Fermat congruence α2 ≡ β 2 (mod n) for all of the 16 values of w,x,y,z. For students, it suffices

to show only one non-trivial split.

wxyz α β gcd(α−β ,n) wxyz α β gcd(α−β ,n)
0000 1 1 3869 1000 100 630 53

0001 2969 1801 73 1001 89 3780 1

0010 1223 420 73 1010 2361 1508 1

0011 3780 3780 3869 1011 400 2520 53

0100 3424 3424 3869 1100 2000 993 53

0101 2735 180 73 1101 2670 1199 1

0110 1869 993 73 1110 3207 662 1

0111 2089 2089 3869 1111 3843 610 53

Let us see a sample calculation for the choice wxyz = 0110. The dependent variables for these choices

are u ≡ x + y + z ≡ 0 (mod 2), and v ≡ w + x + z ≡ 1 (mod 2), that is, uvwxyz = 010110. Therefore

α ≡ 2136× 880× 3032 ≡ 1869 (mod 3869). The exponents of 2,3,5,7 on the other side of congruence are

halves of u+2w+3x+3y+ z = 6, 2u+3v+w+x+3z = 4, u+v+w+2x+y = 4, and u+v+w+y = 2, that

is, β ≡ 23×32×52×7≡ 993 (mod 3869). We have gcd(1869−993,3869) = 73.
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4. (a) Let E = EA,B be an elliptic curve defined by the equation Y 2 = X3 +AX +B over a field K which is

not algebraically closed, and which has char(K) /∈ {2,3}. For such an elliptic curve EA,B, denote the set of

polynomials on E as K[E] = K[X ,Y ]/(Y 2−X3−AX −B). Prove that a polynomial f (x,y) ∈ K[E] can be

written uniquely in the canonical form. (5)

Solution As EA,B is quadratic and monic in y, the polynomial function can be expressed as f (x,y) = v(x)+ yw(x) with

v(x),w(x) ∈ K[x]. We prove the uniqueness of this expression by contradiction. Let f (x,y) = v1(x)+ yw1(x) =
v2(x)+ yw2(x) be two canonical forms of f , that is, (v1(x)− v2(x))+ y(w1(x)−w2(x)) = 0.

Setting v(x) = v1(x)− v2(x), w(x) = w1(x)−w2(x), we have v(x) + yw(x) = 0. Multiplying both sides by

v(x)− yw(x), we get v2(x)− s(x)w2(x) = 0, where s(x) = y2 = x3 + Ax + B. Notice that degx(v
2(x)) and

degx(w
2(x)) are both even. But degx(s(x)) is odd. Thus, we have a contradiction unless v(x) = w(x) = 0.

(b) Let K(E) denote the set of rational functions on the elliptic curve EA,B. Prove that a rational function

r(x,y)∈K(E) with no finite poles is a polynomial. (Hint: Express r(x,y) in the canonical form a(x)+yb(x)
with a(x),b(x) ∈ K(x), and show that neither a(x) nor b(x) has finite poles. You may make use of the fact

that if r(x,y) does not have finite poles, the conjugate r(x,y) = a(x)− yb(x) also does not have finite poles.) (5)

Solution Write r(x,y) ∈ K(E) without poles in the canonical form r(x,y) = a(x)+ yb(x) with a(x),b(x) ∈ K(x).

As r(x,y) (or in brief r) has no finite poles, r = a− yb too has no finite poles⇒ r+ r = 2a does not have finite

poles⇒ r−a = yb does not have finite poles⇒ (yb)2 = sb2 has no finite poles.

Assume that b has a pole of multiplicity m > 1⇒ b2 has a pole of multiplicity 2m > 2. But sb2 does not have

a finite pole, so s has a zero of multiplicity 2m > 2. This contradicts the smoothness of the elliptic curve EA,B.
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5. Let n be a positive integer, and let k = ⌊log2 n⌋+ 1, which implies that 2k > n. Provide a proof of the fact

that n always has an expansion of the form

n = u0 +u1 ·2+u2 ·4+ · · ·+uk ·2k

with u0,u1, . . . ,uk ∈ {−1,0,1}, and with at most 1
2
k of the ui non-zero. (5)

Solution The proof is presented as an algorithm for writing n in the desired form. We start by writing n in binary:

n = u0 +u1 ·2+u2 ·4+ · · ·+uk−1 ·2k−1. (1)

Working from left to right, we look for the occurrence of two or more consecutive non-zero coefficients ui.

For example, suppose us = us+1 = · · · = us+t−1 = 1, and us+t = 0, for some t > 1. Then, we can replace

2s +2s+1 + · · ·+2s+t−1 +0 ·2s+t = 2s(1+2+4+ · · ·+2t−1) = 2s(2t −1) =−2s +2s+t .

Repeating this procedure gives us an expansion of n with no consecutive non-zero ui. This expansion can go up

to 2k (as opposed to the original expansion which goes up to 2k−1). Thus, at most 1
2
k of the ui are non-zero.
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6. A non-supersingular elliptic curve E over F2m consists of all the solutions (x,y) ∈ F2m×F2m of the equation

y2 + xy = x3 +ax2 +b, where a and b are in F2m and b 6= 0, together with the point at infinity denoted by O .

Let P = (x,y), P1 = (x1,y1), and P2 = (x2,y2) be finite rational points on E. Assume that P2 = P1 +P. Prove

that the x-coordinate x3 of P1 +P2 can be computed in terms of the x-coordinates of P, P1, and P2 as (5)

x3 =



















(

x1

x1 + x2

)2

+
x1

x1 + x2

+ x if P1 6= P2,

x2
1 +

b

x2
1

if P1 = P2.

Solution From the chord-and-tangent rule of addition on elliptic-curve points, we have

x3 =















(

y1 + y2

x1 + x2

)2

+
y1 + y2

x1 + x2
+ x1 + x2 +a if P1 6= P2,

x2
1 +

b

x2
1

if P1 = P2.

Hence, for the case P1 = P2, the result is straightforward.

As P1 = (x1,y1) and P2 = (x2,y2) are on the curve, we have y2
1+x1y1 = x3

1+ax2
1+b and y2

2+x2y2 = x3
2+ax2

2+b,

so

x3 =
x1y2 + x2y1 + x1x2

2 + x2x2
1

(x1 + x2)2
. (2)

The x-coordinate of P2−P1 is

x =
x1y2 + x2(x1 + y1)+ x1x2

2 + x2x2
1

(x1 + x2)2
. (3)

Adding (2) and (3), we obtain the desired result.
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7. Consider the elliptic curve E : Y 2 = (X −1)(X −2)(X −3) defined over F5. Answer the following parts in

the context of this curve.

(a) Assuming that F5 is represented by the set {0,1,2,−2,−1}, annotate the points on the elliptic curve. (3)

P1 = (0,2)

P2 = (−1,1)

P3 = (−2, 0 )

P4 = (−1, −1 )

P5 = (0, −2 )

P6 = (1, 0 )

P7 = (2, 0 )

P8 = O

(b) Show that the rational function f (x) = (x−1) ∈ F5(E) has divisor div( f ) = 2[P6]−2[O]. (3)

Solution The function f has neither a zero nor a pole if x 6= 1. The uniformizer at P6 = (1,0) is y. Write f (x,y) = x−1 =
y2

(x−2)(x−3)
. Hence, the degree of f at P6 is 2, and the result follows from the fact that the sum of the (signed)

multiplicities of the zeros and the poles of a rational function is zero.

(c) Prove that the order of the point P2 in E(F5) is 4. (2)

Solution 2P2 = P7, and 2P7 = O .
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(d) Using Miller’s algorithm, find the rational functions fP2
and fP4

, such that div( fP2
) = 4[P2]−4[O], and

div( fP4
) = 4[P4]−4[O]. (4)

Solution We have fP2
=

(y+2x+1)2

(x−2)
= x2 +4y, and fP4

=
(y−2x−1)2

(x−2)
= x2−4y.

(e) Compute the Weil pairing e4(P2,P4) from the formula

e4(P2,P4) =
fP2

(P4 +S)

fP2
(S)

/

fP4
(P2−S)

fP4
(−S)

by taking S = P4. Note that the definition holds for any S /∈ {O,P2,−P4,P2−P4}.
(Hint: Ensure that the functions fP2

and fP4
are in normal forms.) (4)

Solution By taking S = P4, we have

e4(P2,P4) =
fP2

(2P4)

fP2
(P4)

/

fP4
(P2−P4)

fP4
(−P4)

.

Now, P4 = (−1,−1) ⇒ 2P4 = P7 = (2,0), −P4 = P2 = (−1,1), P2 − P4 = 2P2 = P7 = (2,0). Therefore

e4(P2,P4) =
fP2

(2,0)

fP2
(−1,−1)

/

fP4
(2,0)

fP4
(−1,1)

=

(

4

−3

)/(

4

−3

)

= 1.
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