
Fast Multiplication on Elliptic Curves over
GF (2m) without Precomputation

Julio López1? and Ricardo Dahab2??

1 Department of Combinatorics & Optimization
University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada (jclherna@cacr.math.uwaterloo.ca)
2 Institute of Computing

State University of Campinas,
Campinas, C.P. 6176, 13083-970 SP, Brazil (rdahab@dcc.unicamp.br).

Abstract. This paper describes an algorithm for computing elliptic
scalar multiplications on non-supersingular elliptic curves defined over
GF (2m). The algorithm is an optimized version of a method described
in [1], which is based on Montgomery’s method [8]. Our algorithm is
easy to implement in both hardware and software, works for any elliptic
curve over GF (2m), requires no precomputed multiples of a point, and
is faster on average than the addition-subtraction method described in
draft standard IEEE P1363. In addition, the method requires less me-
mory than projective schemes and the amount of computation needed
for a scalar multiplication is fixed for all multipliers of the same binary
length. Therefore, the improved method possesses many desirable fea-
tures for implementing elliptic curves in restricted environments.

Key words. Elliptic Curves over GF (2m), Point multiplication.

1 Introduction

Elliptic curve cryptography first suggested by Koblitz [5] and Miller [12] is beco-
ming increasingly common for implementing public-key protocols as the Diffie-
Hellman key agreement. The security of these cryptosystems relies on the pre-
sumed intractability of the discrete logarithm problem on elliptic curves. Since
there is no known sub-exponential type algorithm for elliptic curves over finite
fields, the sizes of the fields, keys, and other parameters can be considered shor-
ter than other public key cryptosystems such as RSA with the same level of
security. This can be especially an advantage for applications where resources
such as memory and/or computing power are limited.

Elliptic curves over GF (2m) are particularly attractive, because the finite
field operations can be implemented very efficiently in hardware and software.
? Dept. of Computer Science, University of Valle, A.A. 25130 Cali, Colombia.

Research supported by a CAPES-Brasil scholarship
?? Partially supported by a PRONEX-FINEP research grant no. 107/97

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 316–327, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 317

See for example [1] for a hardware implementation of GF (2155), and [19] for a
software implementation of GF (2191).

Given an elliptic point P and a large integer k of about the size of the
underlying field, the operation elliptic scalar multiplication, kP , is defined to
be the elliptic point resulting from adding P to itself k times. This operation,
analogous to exponentiation in multiplicative groups, is the most time consuming
operation of the elliptic curve cryptosystems.

In this paper, the calculation of kP for a random integer k and a random
point P is considered. An efficient scalar multiplication algorithm, which is an
optimized version of an algorithm described in [1], is presented. The proposed al-
gorithm is suitable for hardware and software implementation of random elliptic
curves over GF (2m).

2 Previous Work

The basic method for computing kP is the addition-subtraction method descri-
bed in draft standard IEEE P1363 [14]. This method is an improved version
over the well known “add-and-double” (or binary) method, which requires no
precomputations. For a random multiplier k, this algorithm performs on average
8
3 log2 k field multiplications and 4

3 log2 k field inversions in affine coordinates,
and 8 1

3 log2 k field multiplications in projective coordinates.
Several proposed generalizations of the binary method (for exponentiation in

a multiplicative group), such as the k-ary method, the signed window method,
can be extended to compute elliptic scalar multiplications over a finite field
[11]. These algorithms are based on the use of precomputation and methods for
recoding the multiplier. In [3], several algorithms are analyzed under various
conditions. However, most of the proposed optimizations may not be worthwhile
when memory is at a premium.

Some special classes of elliptic curves defined over GF (2m) allow efficient
implementations. For anomalous curves, the fastest known algorithm to compute
kP is given in [17]; for curves defined over small subfields, efficient algorithms
are presented in [13].

In [4,16,7] some techniques are presented for accelerating methods such as
k-ary and window based methods. These methods are suitable for software im-
plementation of random elliptic curves over GF (2m).

A different approach for computing kP was introduced by Montgomery [8].
This approach is based on the binary method and the observation that the x-
coordinate of the sum of two points whose difference is known can be computed in
terms of the x-coordinates of the involved points. This method uses the following
variant of the binary method:

318 J. López and R. Dahab

Input: An integer k > 0 and a point P.
Output: Q = kP.

1. Set k ← (kl−1 . . . k1k0)2.
2. Set P1 ← P, P2 ← 2P.
3. for i from l − 2 downto 0 do

if ki = 1 then
Set P1 ← P1 + P2, P2 ← 2P2.

else
Set P2 ← P2 + P1, P1 ← 2P1.

4. return(Q = P1).

Fig. 1. Algorithm 1: Binary Method

Note that this method maintains the invariant relationship P2 − P1 = P ,
and performs an addition and a doubling in each iteration. In [9], Montgomery’s
method was applied for reducing the number of registers needed to add points in
supersingular curves over GF (2m). However, the authors observed that the be-
nefits in storage provided by Montgomery’s method is at a considerable expense
of speed.

From the point of view of hardware implementation of elliptic curves over
GF (2m), few papers have discussed efficient methods for computing kP . In [1],
Montgomery’s method was adapted for non-supersingular elliptic curves over
GF (2m). However, the formulas given for implementing each iteration are not
efficient in terms of field multiplications.

In this paper we will present an efficient implementation of Montgomery’s
method for computing kP on non-supersingular elliptic curves over GF (2m).

The remainder of the paper is organized as follows. In Section 3 we present
a short introduction to elliptic curves over GF (2m). The proposed algorithm
is described and analyzed in Section 4. Some running times of the proposed
algorithm based on LiDIA are presented in Section 5. An implementation of the
proposed algorithm is given in the appendix.

3 Elliptic Curves over GF (2m)

Here we present a brief introduction to elliptic curves; more information on
elliptic curves over finite fields of characteristic two can be found in [10,14]. Let
GF (2m) be a finite field of characteristic two. A non-supersingular elliptic curve
E over GF (2m) is defined to be the set of solutions (x, y) ∈ GF (2m)×GF (2m)
to the equation,

y2 + xy = x3 + ax2 + b ,

where a and b ∈ GF (2m), b 6= 0, together with the point at infinity denoted by
O.

It is well known that E forms a commutative finite group, with O as the
group identity, under the addition operation known as the “tangent and chord

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 319

method”. Explicit rational formulas for the addition rule involve several arithme-
tic operations (adding, squaring, multiplication and inversion) in the underlying
finite field. Formulas for adding two points in projective coordinates can be fo-
und in [10,7]. In affine coordinates, the elliptic group operation is given by the
following. Let P = (x1, y1) ∈ E; then −P = (x1, x1 + y1). For all P ∈ E, O +
P = P + O = P. If Q = (x2, y2) ∈ E and Q 6= −P , then P + Q = (x3, y3),
where

x3 =




(y1 + y2
x1 + x2

)2 + y1 + y2
x1 + x2

+ x1 + x2 + a , P 6= Q

x2
1 + b

x2
1

, P = Q.
(1)

and

y3 =

{
(y1 + y2
x1 + x2

)(x1 + x3) + x3 + y1 , P 6= Q

x2
1 + (x1 + y1

x1
)x3 + x3 , P = Q.

(2)

Notice that the x-coordinate of 2P does not involve the y-coordinate of P . This
observation will be used in the derivation of the improved method.

4 Improved Method

This section describes the improved method for computing kP . We first develop
an algorithm in affine coordinates which requires two field inversions in each ite-
ration. Next a “projective” version is presented with more field multiplications,
but with only one field inversion at the end of the computation.

4.1 Affine Version

The extension of Montgomery’s method [8] to elliptic curves over GF (2m) re-
quires formulas for implementing Step 3 of Algorithm 1. In what follows we give
efficient formulas that use only the x-coordinates of P1, P2 and P for performing
the arithmetic operations needed in Algorithm 1. At the end of the lth iteration
of Algorithm 1, we obtain the x-coordinates of kP and (k+1)P . We also provide
a simple formula for recovering the y-coordinate of kP .

The following lemma gives another formula for computing the x-coordinate
of the addition of two different points.

Lemma 1 Let P1 = (x1, y1), and P2 = (x2, y2) be elliptic points. Then the
x-coordinate of P1 + P2, x3, can be computed as follows.

x3 =
x1y2 + x2y1 + x1x

2
2 + x2x

2
1

(x1 + x2)2
. (3)

Proof. Since P1 and P2 are elliptic points, it follows that y2
1 +y2

2 +x1y1 +x2y2 +
x3

1 + x3
2 = 0. The result then follows easily from formula (1).

The following lemma shows how to compute the x-coordinate for the addition
of two points whose difference is known.

320 J. López and R. Dahab

Lemma 2 Let P = (x, y), P1 = (x1, y1), and P2 = (x2, y2) be elliptic points.
Assume that P2 = P1+P . Then the x-coordinate of P1+P2, x3, can be computed
in terms of the x-coordinates of P, P1 and P2 as follows.

x3 =




x + (x1
x1 + x2

)2 + x1
x1 + x2

, P1 6= P2

x2
1 + b

x2
1

, P1 = P2.
(4)

Proof. The case P = O follows directly from (1). Applying formula (3), we
obtain that the x-coordinate of P2 + P1 can be rewritten as

x3 =
x1y2 + x2y1 + x1x

2
2 + x2x

2
1

(x1 + x2)2
. (5)

Similarly, the x-coordinate of P2 − P1 satisfies

x =
x1y2 + x2(x1 + y1) + x1x

2
2 + x2x

2
1

(x1 + x2)2
. (6)

The result follows from adding (5) and (6).
The next lemma allows one to compute the y-coordinate of P1 when P and

the x-coordinates of P1 and P1 + P are known.

Lemma 3 Let P = (x, y), P1 = (x1, y1), and P2 = (x2, y2) be elliptic points.
Assume that P2 = P1 + P and x 6= 0. Then the y-coordinate of P1 can be
expressed in terms of P , and the x-coordinates of P1 and P2 as follows.

y1 = (x1 + x){(x1 + x)(x2 + x) + x2 + y}/x + y . (7)

Proof. Since P2 = P1 + P , we obtain from (3) that y1 satisfies the following
equation:

x2(x1 + x)2 = x1y + xy1 + x1x
2 + xx2

1 .

Therefore,

xy1 = x2x
2
1 + x2x

2 + x1y + x1x
2 + xx2

1

= x1{x1x2 + x1x + x2 + y}+ x{xx2}
= x1{x1x2 + x1x + x2 + xx2 + x2 + y}

+ x{x1x2 + x1x + xx2 + y}+ xy

= (x1 + x){(x1 + x)(x2 + x) + x2 + y}+ xy.

The following algorithm, based on Lemmas 2 and 3, implements Montgo-
mery’s method in affine coordinates.

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 321

Input: An integer k ≥ 0 and a point P = (x, y) ∈ E.
Output: Q = kP.

1. if k = 0 or x = 0 then output(0, 0) and stop.
2. Set k ← (kl−1 . . . k1k0)2.
3. Set x1 ← x, x2 ← x2 + b/x2.
4. for i from l − 2 downto 0 do

Set t← x1
x1 + x2

.
if ki = 1 then

Set x1 ← x + t2 + t, x2 ← x2
2 + b/x2

2.
else

Set x1 ← x2
1 + b/x2

1, x2 ← x + t2 + t.
5. Set r1 ← x1 + x, r2 ← x2 + x.
6. Set y1 ← r1(r1r2 + x2 + y)/x + y
7. return(Q = (x1, y1)).

Fig. 2. Algorithm 2A: Montgomery Scalar Multiplication

Observe that Algorithm 2A, in each iteration of Step 4, performs two field
inversions, one general field multiplication, one multiplication by the constant
b, two squarings, and four additions; it follows that the total number of field
operations to compute kP is given in the following lemma:

Lemma 4 For computing kP , Algorithm 2A takes exactly the following number
of field operations in GF (2m):

#INV. = 2blog2 kc+ 1 , #MULT. = 2blog2 kc+ 4 ,
#ADD. = 4blog2 kc+ 6 , #SQR. = 2blog2 kc+ 2.

Remark. A further improvement to Algorithm 2A is to use an optimized routine
to multiply by the constant b. Another potential improvement is to compute in
parallel x1 and x2 from Step 4, since these calculations are independent of each
other.

4.2 Projective Version

When field inversion in GF (2m) is relatively expensive (e.g., inversion based on
Fermat’s theorem requires at least 7 multiplications in GF (2m) if m ≥ 128),
then it may be of computational advantage to use fractional field arithmetic to
perform elliptic curve calculations.

Let P, P1 and P2 be points on the curve E such that P2 = P1 + P . Let the
x-coordinate of Pi be represented by Xi/Zi, for i ∈ {1, 2}. From Lemma 2, when
the x-coordinate of 2Pi is converted to projective coordinates it becomes

322 J. López and R. Dahab

{
x(2Pi) = X4

i + b · Z4
i ,

z(2Pi) = Z2
i ·X2

i .
(8)

Similarly, the x-coordinate of P1 +P2 in projective coordinates can be computed
as the fraction X3/Z3, where{

Z3 = (X1 · Z2 + X2 · Z1)2 ,
X3 = x · Z3 + (X1 · Z2) · (X2 · Z1).

(9)

The addition formula requires three general field multiplications, one multi-
plication by x (i.e., the x-coordinate of P , which is fixed during the computation
of kP), one squaring and two additions; doubling requires one general field multi-
plication, one multiplication by the constant b, five squarings, and one addition.
A method based on these formulas is described in the next algorithm.

Fig. 3. Algorithm 2P: Montgomery Scalar Multiplication

Input: An integer k ≥ 0 and a point P = (x, y) ∈ E.
Output: Q = kP.

1. if k = 0 or x = 0 then output(0, 0) and stop.
2. Set k ← (kl−1 . . . k1k0)2.
3. Set X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2.
4. for i from l − 2 downto 0 do

if ki = 1 then
Madd(X1, Z1, X2, Z2), Mdouble(X2, Z2).

else
Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1).

5. return(Q = Mxy(X1, Z1, X2, Z2)).

An implementation of the procedures Madd, Mdouble and Mxy is given in the
appendix.

Lemma 5 Algorithm 2P performs exactly the following number of field opera-
tions in GF (2m):

#INV. = 1 , #MULT. = 6blog2 kc+ 10 ,
#ADD. = 3blog2 kc+ 7 , #SQR. = 5blog2 kc+ 3.

Remark. Since the complexity of both versions of Algorithm 2 does not depend
on the number of 1’s (or 0’s) in the binary representation of k, this may help
to prevent timing attacks. On the other hand, the use of restricted multipliers
(e.g., with small Hamming weight) does not speedup directly Algorithms 2A
and 2P, and this is a disadvantage compared to methods such as the binary
method. However, from a practical point of view, most protocols in cryptographic
applications use random multipliers.

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 323

4.3 Complexity Comparison

In the sequel, we assume that adding and squaring in GF (2m) is relatively
fast. Now we compare the complexities of the addition-subtraction method to
the complexity of the proposed method. This is a fair comparison since both
methods do not use precomputation. For a random multiplier k, the addition-
subtraction method in projective coordinates, given in [14], performs 8.3log2 k
field multiplications; it follows we expect Algorithm 2P to be about 28% fa-
ster on average. However, if we use the formulas given in [7] for implementing
the group operation in projective schemes, Algorithm 2P is about 14% faster
than the addition-subtraction method. In the following table we summarize the
complexities of these methods.

Table 1. Complexity Comparison of Algorithm 2P with other algorithms (a = 0, 1).

Method Projective Coordinates
Binary [10] 13 log2 k

Add-Sub [14] 8.3 log2 k

Add-sub[7] 7 log2 k

Algorithm 2P 6 log2 k

Now we derive the cost of the addition-subtraction method (using affine coor-
dinates) in terms of field multiplications. As mentioned in Section 2, this method
performs on average 8

3 log2 k field multiplications and 4
3 log2 k field inversions.

Thus, the total cost is 1
3 (4r + 8) multiplications, where r is the cost-ratio of

inversion to multiplication. This shows that for implementations of the finite
field GF (2m) where r > 2.5 (see for example [1,19,4]), Algorithm 2P gives a
computational advantage over the addition-subtraction method.

5 Running Times

In this section we present some running times we obtained in our software im-
plementation of the proposed algorithm over the finite fields GF (2m), where
m = 163, 191 and 239. To represent the finite fields we used LiDIA [6], a C++
based library. This finite field implementation uses a polynomial basis represen-
tation and the irreducible modulus is chosen as sparse as possible. We used a Sun
UltraSPARC 300MHz machine. For comparison, we list in Table 2 the timings
for the basic arithmetic operations in GF (2m).

Notice that one field inverse costs more than 9 field multiplications; there-
fore, the use of LiDIA may illustrate the performance of the proposed algorithm
in situations where a field inverse is relatively expensive compared to field mul-
tiplication.

In Table 3 we present average running times for computing a scalar multi-
plication using several methods. These values were obtained using the following

324 J. López and R. Dahab

Table 2. Average running times (in microseconds) for GF (2m) using LiDIA.

Extension m Add. Sqr. Mult. Inv.
163 0.6 2.3 10.5 96.2
191 0.7 2.0 10.9 118.1
239 0.8 2.6 14.6 162.8

Table 3. Average running times (in milliseconds) for computing mP .

Extension m Binary[10] Add-Sub.[14] Algorithm 2P
163 27.5 19.1 13.5
191 33.1 22.4 16.0
239 52.3 35.1 25.6

test: we select 10 random elliptic curves (a = 0) over GF (2m), then we mul-
tiply a random point P in each curve with 100 randomly chosen integers of
size < 2m. We implemented the binary method in projective coordinates (see
[10]), the addition-subtraction method [14] and Algorithm 2P. From Table 3
we conclude that the proposed method on average is 27-29% faster than the
addition-subtraction method and 51% faster than the binary method. These ti-
mings show that the theoretical improvement of Algorithm 2P, given in Table 1,
is observed in a actual implementation.

6 Conclusion

In this paper, we have presented an efficient method for computing elliptic scalar
multiplications, which is an optimized version of an algorithm presented in [1].
The method performs exactly 6blog2 kc + 10 field multiplication for computing
kP on elliptic curves selected at random, is easy to implement in both hardware
and software, requires no precomputations, works for any implementation of
GF (2n), is faster than the addition-subtraction method on average, and uses
fewer registers than methods based on projective schemes. Therefore, the method
appears useful for applications of elliptic curves in constraint environments such
as mobile devices and smart cards.

7 Acknowledgments

The first author would like to thank Alfred Menezes for making him possible to
visit the center CACR and for his encouragement and support during this work.
We also thanks the referees for their helpful comments.

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 325

References

1. G. B. Agnew, R. C. Mullin and S. A. Vanstone, “An Implementation of Elliptic
Curve Cryptosystems Over F2155”, IEEE journal on selected areas in communica-
tions, Vol 11. No. 5, June 1993.

2. ANSI X9.62: “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, draft,
July 1997.

3. D. M. Gordon, “A survey of Fast Exponentiation Methods”, Journal of Algorithms,
27, pp. 129-146, 1998.

4. J. Guajardo and C. Paar, “Efficient Algorithms for Elliptic Curve Cryptosystems”,
Advances in Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Springer-
Verlag,1997,pp. 342-356.

5. N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation, 48, pp.
203-209, 1987.

6. LiDIA Group LiDIA v1.3- A library for computational number theory. TH-
Darmstadt, 1998.

7. J. Lopez and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in
GF (2n)”, SAC’98, LNCS Springer Verlag, 1998.

8. P. Montgomery, “Speeding the Pollard and elliptic curve methods of factorization”,
Mathematics of Computation, vol 48, pp. 243-264, 1987.

9. A. Menezes and S. Vanstone, “Elliptic curve cryptosystems and their implementa-
tion”, Journal of Cryptology, 6, 1993, pp. 209-224.

10. A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers,
1993.

11. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of applied cryptography,
CRC Press, 1997.

12. V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology: pro-
ceedings of Crypto’85, Lecture Notes in Computer Science, vol. 218. New York:
Springer-Verlag, 19986, pp. 417-426.

13. V. Müller, “Fast Multiplication on Elliptic Curves over Small Fields of Characte-
ristic Two”, Journal of Cryptology, 11, 1998, pp. 219-234.

14. IEEE P1363: “Editorial Contribution to Standard for Public Key Cryptography”,
draft, 1998.

15. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with
elliptic curve systems,” Advances in Cryptology, Proc. Crypto’95, LNCS 963, D.
Coppersmith, Ed., Springer-Verlag, 1995, pp. 43-56.

16. R. Schroeppel, “Faster Elliptic Calculations in GF (2n),” preprint, March 6, 1998.
17. J. Solinas, “An improved algorithm for arithmetic on a family of elliptic curves,”

Advances in Cryptology, Proc. Crypto’97, LNCS 1294, B. Kaliski, Ed., Spring-
Verlag, 1997, pp. 357-371.

18. E. De Win, A. Bosselaers, S. Vanderberghe, P. De Gersem and J. Vandewalle,
“A fast software implementation for arithmetic operations in GF (2n),” Advances
in Cryptology, Proc. Asiacrypt’96, LNCS 1163, K. Kim and T. Matsumoto, Eds.,
Springer-Verlag, 1996, pp. 65-76.

19. E. De Win, S. Mister, B. Prennel and M. Wiener, “On the Performance of Signature
based on Elliptic Curves”, LNCS, 1998.

326 J. López and R. Dahab

8 Appendix

Mdouble (Doubling algorithm)

Input: the finite field GF (2m); the field elements a and c = b2m−1
(c2 = b)

defining a curve E over GF (2m); the x-coordinate X/Z for a point P .
Output: the x-coordinate X/Z for the point 2P .

1. T1 ← c
2. X ← X2

3. Z ← Z2

4. T1 ← Z × T1
5. Z ← Z ×X
6. T1 ← T 2

1
7. X ← X2

8. X ← X + T1

This algorithm requires one general field multiplication, one field multiplication
by the constant c, four field squarings and one temporary variable.

Madd (Adding algorithm)

Input: the finite field GF (2m); the field elements a and b defining a curve E
over GF (2m); the x-coordinate of the point P ; the x-coordinates X1/Z1 and
X2/Z2 for the points P1 and P2 on E.
Output: The x-coordinate X1/Z1 for the point P1 + P2.

1. T1 ← x
2. X1 ← X1 × Z2
3. Z1 ← Z1 ×X2
4. T2 ← X1 × Z1
5. Z1 ← Z1 + X1
6. Z1 ← Z2

1
7. X1 ← Z1 × T1
8. X1 ← X1 + T2

This algorithm requires three general field multiplications, one field multiplica-
tion by x, one field squaring and two temporary variables.

Fast Multiplication on Elliptic Curves over GF (2m) without Precomputation 327

Mxy (Affine coordinates)

Input: the finite field GF (2m); the affine coordinates of the point P = (x, y);
the x-coordinates X1/Z1 and X2/Z2 for the points P1 and P2.
Output: The affine coordinates (xk, yk) = (X2, Z2) for the point P1.

1. if Z1 = 0 then output (0,0) and stop.
2. if Z2 = 0 then output (x, x + y) and stop.
3. T1 ← x
4. T2 ← y
5. T3 ← Z1 × Z2
6. Z1 ← Z1 × T1
7. Z1 ← Z1 + X1
8. Z2 ← Z2 × T1
9. X1 ← Z2 ×X1
10. Z2 ← Z2 + X2
11. Z2 ← Z2 × Z1
12. T4 ← T 2

1
13. T4 ← T4 + T2
14. T4 ← T4 × T3
15. T4 ← T4 + Z2
16. T3 ← T3 × T1
17. T3 ← inverse(T3)
18. T4 ← T3 × T4
19. X2 ← X1 × T3
20. Z2 ← X2 + T1
21. Z2 ← Z2 × T4
22. Z2 ← Z2 + T2

This algorithm requires one field inversion, ten general field multiplications, one
field squaring and four temporary variables.

	Introduction
	Previous Work
	Elliptic Curves over $GF(2^m)$
	 Improved Method
	Affine Version
	 Projective Version
	Complexity Comparison

	 Running Times
	Conclusion
	Acknowledgments
	Appendix

