Quadratic Congruences

Debdeep Mukhopadhyay

Associate Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302

Objectives

- Quadratic Residue
- Primitive Element
- Euler's Criterion
- Legendre Symbol

Practice Problem

...(1),

...(2)

Let *C* be a solution of:

 $f(x) \equiv 0 \pmod{p^a}$ and let $f'(C) \neq 0 \pmod{p}$

Then prove: $f(x) \equiv 0 \pmod{p^{a+t}}$ has exactly one solution corresponding to the solution x = C of (1), for every integer t > 0.

Quadratic Residue

Suppose p is an odd prime and a is an integer. a is defined to be a *quadratic residue* modulo p if $a \not\equiv 0 \pmod{p}$ and the congruence $y^2 \equiv a \pmod{p}$ has a solution $y \in \mathbb{Z}_p$. a is defined to be a *quadratic non-residue* modulo p if $a \not\equiv 0 \pmod{p}$ and a is not a quadratic residue modulo p.

There are exactly (p-1)/2 QR (Quadratic Residues)

Example

Generalization
How many solutions are there to $x^2 \equiv a \pmod{p}$
for odd positive prime <i>p</i> ?
If, $y^2 \equiv a \pmod{p}, y \in Z_p^*$
then $(-y)^2 \equiv a \pmod{p}$
Note, $y \neq -y \pmod{p}$, as p is odd
Thus, the quadratic congruence:
$x^2 - a \equiv 0 \pmod{p}$
can be factored into
$(x - y)(x + y) \equiv 0 \pmod{p}$
Since, p is prime, $p (x - y)$ or $p (x + y)$
Thus, $x \equiv \pm y \pmod{p}$
Thus, there are exactly two solutions of the congruence.

The QR Problem

Quadratic Residues

Instance: Question: An odd prime p, and an integer a. Is a a quadratic residue modulo p?

• We have a polynomial time deterministic algorithm to solve this decision problem.

Euler comes to the rescue again

(Euler's Criterion) Let p be an odd prime. Then a is a quadratic residue modulo p if and only if

 $a^{(p-1)/2} \equiv 1 \pmod{p}.$

- The time complexity of this check is O(log p)³ by applying square and multiply method to raise an element to a power.
- Note that if a^{(p-1)/2} = -1(mod p) then a is a nonquadratic residue.

Cyclic Group

- If p is prime, then Z_p^{*} is a group of order p-1 and any element in Z_p^{*} has an order which divides (p-1).
- In fact, if p is prime, then there exists at least one element in Z_p^{*} which has order equal to p-1.
 - this is called cyclic group...

- n=19, There are 6 primitive elements.
- Note the order of each element in Z₁₉*.
- Is there a relation?

Example

- p=13
- Thus $\Phi(13-1) = \Phi(12) = \Phi(3x2^2) = 12(1-1/3)(1-1/2) = 12x(2/3)x(1/2) = 4.$
- Question: Is 2 a primitive element of Z₁₃*?
 - generate all the (p-1) powers of 2.
 - lengthy process if p is large.

Theorem

THEOREM 5.8 Suppose that p > 2 is prime and $\alpha \in \mathbb{Z}_p^*$. Then α is a primitive element modulo p if and only if $\alpha^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all primes q such that $q \mid (p-1)$.

Legendre Symbol

Suppose p is an odd prime. For any integer a, define the Legendre symbol $\left(\frac{a}{p}\right)$ as follows:

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{cases}$$

Suppose p is an odd prime. Then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Practice

• Prove $x^2 \equiv 105 \pmod{199}$ has no solution.