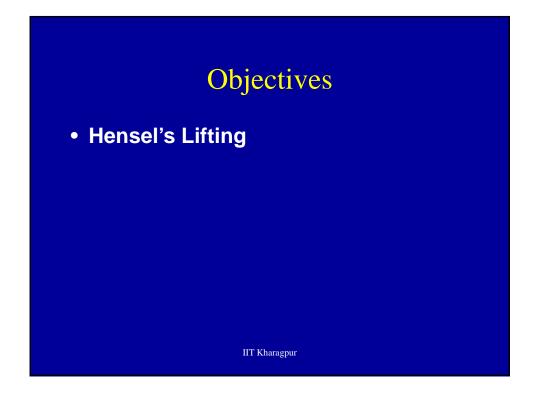
Polynomial Congruences

Debdeep Mukhopadhyay

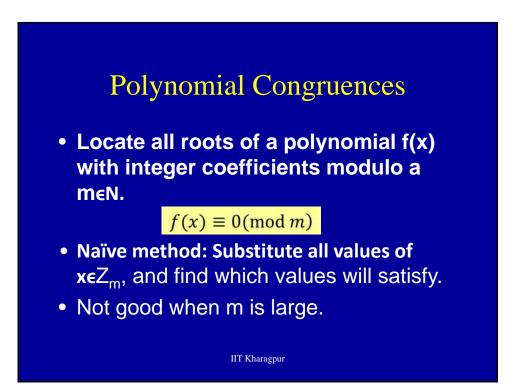
Associate Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302



Linear Congruences

Let, d = gcd(a, m). The congruence $ax \equiv b \pmod{m}$ is solvable for x iff $d \mid b$. If $d \mid b$, then all solutions are congruent to each other modulo m/d, *ie*. there is a unique solution modulo m/d. In particular, if gcd(a, m) = 1, then the congruence has a unique solution modulo m.

IIT Kharagpur



Hensel's lifting

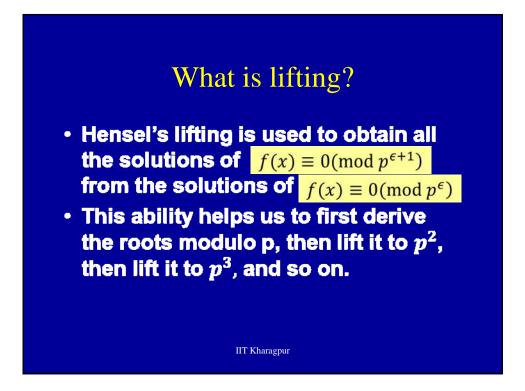
• When complete factors of m is available, we have an efficient method.

Let, $m = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$, with distinct primes p_1, p_2, \dots, p_r , $e_i \in N$.

If we know the roots of f(x) modulo each $p_i^{e_i}$, we can combine these by CRT to obtain all the roots of f(x)modulo *m*.

So, it is sufficient to solve:

 $f(x) \equiv 0 \pmod{p^e}$



Lifting from p^{ϵ} to $p^{\epsilon+1}$

Let, *w* be a solution of $f(x) \equiv 0 \pmod{p^{\varepsilon}}$. All integers that satisfy this equation modulo p^{ε} are $w + kp^{\varepsilon}, k \in \mathbb{Z}$.

How many of them continue to satisfy $f(x) \equiv 0 \pmod{p^{\varepsilon^{+1}}}$?

IIT Kharagpur

Lifting from p^{ϵ} to $p^{\epsilon+1}$

Let,
$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$$

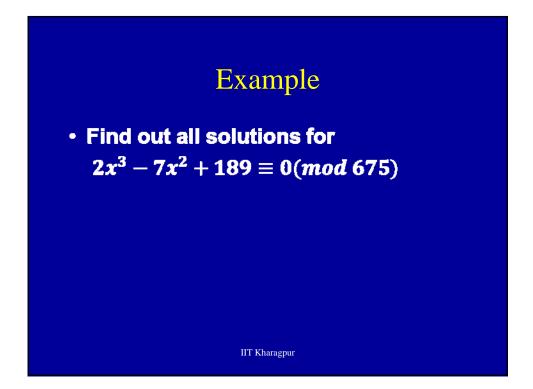
Substituting, $x = w + kp^{\varepsilon}$,
 $f(c) =$
 $a_d (w + kp^{\varepsilon})^d + a_{d-1} (w + kp^{\varepsilon})^{d-1} + \dots + a_1 (w + kp^{\varepsilon}) + a_0$
 $= (a_d w^d + a_{d-1} w^{d-1} + \dots + a_0) +$
 $kp^{\varepsilon} (da_d w^{d-1} + (d-1)a_{d-1} w^{d-2} + \dots + a_1) + p^{2\varepsilon} \alpha$
[α is some polynomial expression in w]
 $= f(w) + kp^{\varepsilon} f'(w) + p^{2\varepsilon} \alpha$.

Lifting from p^{ϵ} to $p^{\epsilon+1}$

Since, $\varepsilon \ge 1, 2\varepsilon \ge \varepsilon + 1$, $[f(w) + kp^{\varepsilon}f'(w) + p^{2\varepsilon}\alpha] \pmod{p^{\varepsilon+1}}$ $= [f(w) + kp^{\varepsilon}f'(w)] \pmod{p^{\varepsilon+1}}$ We need to identify all the values of k for which $[f(w) + kp^{\varepsilon}f'(w)] \pmod{p^{\varepsilon+1}} = 0.$ Thus, $kp^{\varepsilon}f'(w) = -f(w) \pmod{p^{\varepsilon+1}}.$

Clearly,
$$p^{\varepsilon} | f(w) \Rightarrow f'(w)k \equiv -\frac{f(w)}{p^{\varepsilon}} \pmod{p}$$

Note this is a linear congruence with 0, 1, or p solutions.



Practice Problem

Let C be a solution of: $f(x) \equiv 0 \pmod{p^a},$ and let $f'(c) \equiv 0 \pmod{p}.$ Prove, $f(x) \equiv 0 \pmod{p^{a+t}}$

has exactly one solution correspond -ing to the solution $x = C \text{ of } (1), \forall t > 0.$

IIT Kharagpur