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Objectives

• Congruences: Modular Arithmetic

• Chinese Remainder Theorem (CRT)
– expressing the whole in parts



IIT Kharagpur 2

Congruences

• We say that a is congruent to b modulo m, and we 
write a ≡ b mod m, if m divides b-a.

• Example: -2 ≡ 19 (mod 21), 20 ≡ 0 (mod 10).

• Congruence modulo m is an equivalence relation 
on the integers.
– any integer is congruent to itself modulo m (reflexivity)
– a ≡ b mod m, implies that b ≡ a mod m (symmetry)
– a ≡ b mod m and b ≡ c mod m implies a ≡ c mod m 

(transitivity) 

The following are equivalent

• a ≡ b mod m

• There is k ε Z, with a = b + km

• When divided by m, both a and b leave the 
same remainder.

• Equivalence Class of a modulo m consists 
of all integers that are obtained by adding 
a with integral multiples of m
– called residue class of a mod m
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Example

• Residue class of 1 mod 4:
{1, 1±4, 1±2*4, 1±3*4,…}

• The set of residue classes mod m is 
denoted by Z/mZ. 
– it has m elements, 0, 1, …, m-1

– this is called a complete set of incongruent 
residues (complete system)

– Examples for complete system for mod 5 is:
{0, 1, …, 4}, {-12, -15, 82, -1, 31} etc.

Theorem

• a≡b mod m, and c≡d mod m, implies 
that -a≡-b mod m, a + c ≡ b + d mod, 
and ac ≡ bd mod m.
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Example

Theorems
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Linear Congruences

• Solving congruences modulo m is 
the same as solving equations in Zm.

• Here, a and b are integers.

• Is it solvable?

• How many solutions exist?

Theorem
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Example

The Chinese Remainder Theorem 
(CRT)

• It solves a system of congruences.

• Suppose m1, m2,…,mr are pairwise 
relatively prime positive integers.

• System of congruences:

CRT asserts that there is 
a unique solution to this 
system
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Example

• x≡3 mod 5

• x≡1 mod 3

• x≡ ? mod 15

• You can verify that the only answer is 
13 mod 15. The first thing to explain 
why there is only one solution.

Uniqueness

• X(x)=(x mod 5, x mod 3)

Note that the mapping is bijective…
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Example

• M=5x3=15

• M1=15/5=3, 3-1mod 5=2

• M2=15/3=5, 5-1mod 3=2

• x=(3x3x2+1x5x2)mod 15

=28 mod 15=13

What is the principle?

Generalization

• We shall present a constructive proof

• In fact, CRT gives an explicit formula 
for  X-1 mod M, where M=m1m2…mr

• Compute, Mi=M/mi, for 1≤i≤r
– Thus, gcd(mi,Mi)=1

• Compute yi=Mi
-1mod mi
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• Thus, Miyi≡1 (mod mi), for 1≤i≤r

• Define, 

• Compute, ρ mod mi≡ai [This is because 
Miyi≡1 (mod mi) and Miyi ≡0 (mod mj)] 

• Since, the domain and range have the same 
cardinality and the function X() is onto, by 
our previous discussion the function is 
bijective. Thus the solution is unique modulo 
M.

The CRT Theorem
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Example


