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CS60094 Computational Number Theory, Spring 2016–2017

Mid-Semester Test

17–February–2017 CSE-107/119/120, 02:00–04:00pm Maximum marks: 40

[
Write your answers in the question paper itself. Be brief and precise. Answer all questions.

]

1. Let m be a large modulus, and a,b ∈ Zm. A sequence x0,x1,x2, . . . is defined by first choosing some x0 ∈ Zm,

and then recursively assigning xn ≡ axn−1 +b (mod m) for n > 1. Assume that a−1 is invertible modulo m.

Propose an algorithm to compute xn in time polynomial in both logm and logn. (8)

Solution Let us unwind the recurrence to get

xn ≡ axn−1 +b

≡ a(axn−2 +b)+b

≡ a2xn−2 +(a+1)b

≡ a2(axn−3 +b)+(a+1)b

≡ a3xn−3 +(a2 +a+1)b

· · ·
≡ anx0 +(an−1 + · · ·+a2 +a+1)b

≡ anx0 +(a−1)−1(an −1)b (mod m).

Using a square-and-multiply exponentiation algorithm, we can compute an (mod m) in poly(logn, logm) time.

The remaining operations (inverse, multiplication, and addition modulo m) can be completed in poly(logm)
time.
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2. Let an irrational number ξ have the infinite simple continued fraction expansion 〈a0,a1,a2, . . .〉. Recall that

the n-th convergent of ξ is the rational number rn =
hn

kn

= 〈a0,a1,a2, . . . ,an〉 for n > 0. Prove that the n-th

convergent of the golden ratio ρ =
1+

√
5

2
is

Fn+2

Fn+1

, where Fi is the i-th Fibonacci number (F0 = 0, F1 = 1,

and Fi = Fi−1 +Fi−2 for i > 2). (8)

Solution Let us first compute the infinite simple continued fraction expansion of ρ as follows:

ρ0 = ρ =
1+

√
5

2
= 1.618 . . . , a0 = ⌊ρ0⌋= 1,

ρ1 =
1

ρ0 −a0
=

2

−1+
√

5
=

2(1+
√

5)

−1+5
=

1+
√

5

2
= 1.618 . . . , a1 = ⌊ρ1⌋= 1,

· · ·

It follows that ρ = 〈1,1,1, . . .〉= 〈1〉. We now prove by induction on n that

rn = 〈 1,1, . . . ,1
︸ ︷︷ ︸

n+1 times

〉= Fn+2

Fn+1

for all n > 0. For n = 0, we have

r0 = 〈1〉= 1 =
1

1
=

F2

F1
.

Suppose that the result holds for n−1. We then have

rn = 1+
1

rn−1
= 1+

Fn

Fn+1
=

Fn+1 +Fn

Fn+1
=

Fn+2

Fn+1
.
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3. (a) Prove that the polynomial f (x) = x3 + x+1 is irreducible in F5[x]. (4)

Solution A cubic polynomial is reducible over F5 if and only if it has a root in F5. But f (0) ≡ 1 (mod 5), f (1) ≡
3 (mod 5), f (2)≡ 11 ≡ 1 (mod 5), f (3)≡ 31 ≡ 1 (mod 5), and f (4)≡ 69 ≡ 4 (mod 5).

(b) Let θ be an imaginary root of f (x). Define the extension F53 = F5(θ) = {aθ 2 +bθ + c | a,b,c ∈ F5}.

Let α = θ 2 + 1 and β = 2θ 2 + 3θ + 4 be elements of F53 in this representation. Compute α +β , αβ , and

α−1 as elements of F53 in the above representation. (8)

Solution We have

α +β = 3θ 2 +3θ +5 = 3θ 2 +3θ ,

and

αβ = θ 2(2θ 2 +3θ +4)+(2θ 2 +3θ +4)

= 2θ 4 +3θ 3 +6θ 2 +3θ +4

= 2θ 4 +3θ 3 +θ 2 +3θ +4

= −2θ(θ +1)−3(θ +1)+θ 2 +3θ +4

= −θ 2 −2θ +1

= 4θ 2 +3θ +1.
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Solution (continued) We can compute α−1 by first noting that

0 = θ 3 +θ +1 = θα +1.

It follows that

α−1 =−θ = 4θ .

4. Counting points on curves defined over finite fields is an interesting and important computational problem.

For simple curves, however, these counts can be derived mathematically. Let p be a large prime.

(a) Show that the straight line ax+by ≡ c (mod p) (where a and b are not both zero modulo p) has exactly

p solutions for (x,y). (4)

Solution First, assume that a is non-zero modulo p, that is, gcd(a, p) = 1. But then, for each value of y ∈ Zp, there is a

unique solution for x satisfying the congruence ax ≡ c−by (mod p). If a ≡ 0 (mod p), then b must be non-zero

modulo p, that is, by ≡ c (mod p) has a unique solution k ≡ b−1c (mod p). But then, (h,k), h ∈ Zp, are all the

points on the line.
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(b) Let p ≡ 1 (mod 4), and a ∈ Z
∗
p. Show that the circle x2+y2 ≡ a (mod p) has exactly p−1 points (x,y).

(Hint: Let r2 ≡−1 (mod p). Rewrite the equation of the circle as (x+ ry)(x− ry)≡ a (mod p).) (4)

Solution Since p ≡ 1 (mod 4), we have
(
−1
p

)

= +1. Let r be a square root of −1 modulo p, that is, r2 ≡ −1 (mod p).

So the equation of the circle can be rewritten as x2 − (ry)2 ≡ a (mod p). Introducing two new variables u,v

satisfying u≡ x+ry (mod p) and v≡ x−ry (mod p) further rewrites the equation of the circle as uv≡ a (mod p).
Since a ∈ Z

∗
p, this congruence is not solvable if we put u ≡ 0 (mod p). But for any u ∈ Z

∗
p, we get a unique

solution for v ≡ u−1a (mod p). Finally, for each solution u,v, we get a unique solution x ≡ 2−1(u+ v) (mod p)
and y ≡ (2r)−1(u− v) (mod p).

(c) Let p ≡ 3 (mod 4), and a ∈ Z
∗
p. Show that the circle x2+y2 ≡ a (mod p) has exactly p+1 points (x,y). (4)

Solution Consider the two congruences x2 ± y2 ≡ a (mod p) together. Plug in a value x = h ∈ Zp. The two congruences

now become y2 ≡ a− h2 (mod p) and y2 ≡ −(a− h2) (mod p). If a ≡ h2 (mod p), both these congruences

have the unique solution y ≡ 0 (mod p). So suppose that a− h2 6≡ 0 (mod p). Since p ≡ 3 (mod 4), we have
(
−1
p

)

=−1, that is, exactly one of the two congruences has two roots, and the other has no roots. To sum up,

the total number of solutions of the two congruences x2 ± y2 ≡ a (mod p) is 2p. As in Part (b), we can show

that the total number of solutions of x2 − y2 ≡ (x+ y)(x− y)≡ a (mod p) is p−1.
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