CS60094 Computational Number Theory, Spring 2016-2017
Class Test
13—-April-2017 CSE 119/120, 6:30-7:30pm Maximum marks: 30

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Consider the extension field F3» = F3(6) with f(0) = 0, where f(x) € F3[x] is a monic irreducible
polynomial of degree n.

(a) Let o be an element of F3. in this representation. Prove that o is the unique cube root of & in F3».
How much time does it take to compute this cube root /o using this exponentiation? 4+4)

3
. . q: n . n—1 .
Solution By Fermat’s little theorem, o = a, that is, ((x3 = a. In order to prove the uniqueness, let § € F3n be a

cube root of ar. We have B3 = «, that is, (B3)3”71 = OcyH, that is, B = a3n71, thatis, § = o
Running time: The exponent 3"~ ! contains about (n — 1)log, 3 = @(n) bits. A repeated square-and-multiply
algorithm requires ®(n) iterations. Each iteration involves a squaring and a conditional multiplication of
polynomials of degrees < n— 1, each followed by reduction modulo the defining polynomial f. Using school-
book arithmetic, this can be done in O(n?) time. To sum up, this exponentiation takes O(n?) time.

— Page 1 0of 3 —



(b) We want to improve the running time to better than the exponentiation-based algorithm of Part (a).
We precompute the two field elements 6'/3 = 63" and 6%/ = (91/ 3)2. Explain how we can express
a=Ay(0%) +A(0%)6 +A2(6%)6? for polynomials Ag,A1,A, over F3. Propose an efficient algorithm to
compute /¢ using this expression of o. What is the running time of your algorithm (excluding the time for
precomputation)? 4+4+4)

Solution We have

o = a0+a19+a262+~~~+an,19”_1
= (ap+a18° +a20°+---) + (a1 + s8> +a70%+-- )0 + (ar +as0* +ag6® +-- )62,

so we take
Ao(e) = a0+a36+a692—|—-~~ s
A(0) = ait+asb+a:0°+- -,
A2(0) = ar+asO+agb’+ -
This gives

Va=a" =40(6%") + 4167167 +A5(07) (0% )2 =4(0) +A1(0)0"2 +A,(0)0%3.

Running time: The three polynomials Ag,Aj,A, can be prepared in O(n) time. Next, we make two
multiplications by the two precomputed elements 6'/3 and 6%/3; these take O(nz) time. Finally, the sums
can be done in O(n) time. So the overall running time is O(n?).

— Page20f3 —



2. You are given a positive integer /. Your task is to find the largest /-bit prime. Propose an efficient sieving
algorithm to solve this problem. Deduce the running time of your algorithm. 5+5)

Solution The largest [-bit number is 2/ — 1. We maintain an array A of length A = @(/) with the array index i € [0,A — 1]
standing for the I-bit number 2/ — 1 —i. We initialize Alij =1 foralli=0,1,2,...,A — 1. We also choose
the first ¢ primes py, p2,...,p;. For each j € {1,2,3,...,t}, we first compute r = (21 — 1) rem p;, and keep on
setting A[r] = 0 and updating r :== r+ p; so long as r < A.

When this sieving is done for all of the ¢ small primes, we test the primality of 2/ — 1 —i for increasing values
of i for which A[i] = 1. The first prime detected is returned.

If no prime is found in the range [2/ — 4,2/ — 1], we increase A, and repeat. If A is a small multiple of /, the
chance of this is low. In case failure happens, we do not need to seed the interval [2/ — 4,2/ — 1] again (for the
old 1), and can sieve the interval [2/ —24,2/ — 4 —1].

Running time: Let us assume that the first sieve succeeds in identifying the largest /-bit prime. Initializing A

takes ®(1) = (/) time. Each division of 2/ — 1 by a small (single-precision) prime can be done in @(/) time.

Marking cells of A takes a total of A ):’j:l pi = O(Alnlnt) time. So the total running time of the sieving stage
J

is dominated by the / remainder calculations, and is ®(?).

Let m = pip>...p;. Only those integers 2/ — 1 — i coprime to m have A[i] = 1 at the end of sieving, and their

count is approximately A¢ (m)/m=A(p1—1)(p2—1)---(p:—1)/(p1p2---p:) <A(1/2)(2/3)---(t/(t+1)) =
A/(t+1). Bach primality test takes time O(/®) using the Miller-Rabin algorithm. So the running time of this
stage is O(I*/1).

— Page 30f3 —



Use this space for leftover answers and rough work




