
CS60094 Computational Number Theory, Spring 2016–2017

Class Test

13–April–2017 CSE 119/120, 6:30–7:30pm Maximum marks: 30

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. Consider the extension field F3n = F3(θ) with f (θ) = 0, where f (x) ∈ F3[x] is a monic irreducible

polynomial of degree n.

(a) Let α be an element of F3n in this representation. Prove that α3n−1

is the unique cube root of α in F3n .

How much time does it take to compute this cube root 3
√

α using this exponentiation? (4+4)

Solution By Fermat’s little theorem, α3n
= α , that is,

(

α3n−1
)3

= α . In order to prove the uniqueness, let β ∈ F3n be a

cube root of α . We have β 3 = α , that is, (β 3)3n−1
= α3n−1

, that is, β 3n
= α3n−1

, that is, β = α3n−1
.

Running time: The exponent 3n−1 contains about (n−1) log2 3 = Θ(n) bits. A repeated square-and-multiply

algorithm requires Θ(n) iterations. Each iteration involves a squaring and a conditional multiplication of

polynomials of degrees 6 n−1, each followed by reduction modulo the defining polynomial f . Using school-

book arithmetic, this can be done in O(n2) time. To sum up, this exponentiation takes O(n3) time.

— Page 1 of 3 —



(b) We want to improve the running time to better than the exponentiation-based algorithm of Part (a).

We precompute the two field elements θ 1/3 = θ 3n−1

and θ 2/3 = (θ 1/3)2. Explain how we can express

α = A0(θ
3)+A1(θ

3)θ +A2(θ
3)θ 2 for polynomials A0,A1,A2 over F3. Propose an efficient algorithm to

compute 3
√

α using this expression of α . What is the running time of your algorithm (excluding the time for

precomputation)? (4+4+4)

Solution We have

α = a0 +a1θ +a2θ 2 + · · ·+an−1θ n−1

= (a0 +a1θ 3 +a2θ 6 + · · ·)+(a1 +a4θ 3 +a7θ 6 + · · ·)θ +(a2 +a5θ 3 +a8θ 6 + · · ·)θ 2,

so we take

A0(θ) = a0 +a3θ +a6θ 2 + · · · ,
A1(θ) = a1 +a4θ +a7θ 2 + · · · ,
A2(θ) = a2 +a5θ +a8θ 2 + · · · .

This gives

3
√

α = α3n−1

= A0(θ
3n

)+A1(θ
3n

)θ 3n−1

+A2(θ
3n

)(θ 3n−1

)2 = A0(θ)+A1(θ)θ
1/3 +A2(θ)θ

2/3.

Running time: The three polynomials A0,A1,A2 can be prepared in O(n) time. Next, we make two

multiplications by the two precomputed elements θ 1/3 and θ 2/3; these take O(n2) time. Finally, the sums

can be done in O(n) time. So the overall running time is O(n2).

— Page 2 of 3 —



2. You are given a positive integer l. Your task is to find the largest l-bit prime. Propose an efficient sieving

algorithm to solve this problem. Deduce the running time of your algorithm. (5+5)

Solution The largest l-bit number is 2l −1. We maintain an array A of length λ = Θ(l) with the array index i ∈ [0,λ −1]
standing for the l-bit number 2l − 1− i. We initialize A[i] = 1 for all i = 0,1,2, . . . ,λ − 1. We also choose

the first t primes p1, p2, . . . , pt . For each j ∈ {1,2,3, . . . , t}, we first compute r = (2l − 1) rem p j, and keep on

setting A[r] = 0 and updating r := r+ p j so long as r < λ .

When this sieving is done for all of the t small primes, we test the primality of 2l −1− i for increasing values

of i for which A[i] = 1. The first prime detected is returned.

If no prime is found in the range [2l −λ ,2l − 1], we increase λ , and repeat. If λ is a small multiple of l, the

chance of this is low. In case failure happens, we do not need to seed the interval [2l −λ ,2l −1] again (for the

old λ ), and can sieve the interval [2l −2λ ,2l −λ −1].

Running time: Let us assume that the first sieve succeeds in identifying the largest l-bit prime. Initializing A

takes Θ(λ ) = Θ(l) time. Each division of 2l −1 by a small (single-precision) prime can be done in Θ(l) time.

Marking cells of A takes a total of λ ∑t
j=1

1
p j

= O(λ ln ln t) time. So the total running time of the sieving stage

is dominated by the l remainder calculations, and is Θ(l2).

Let m = p1 p2 . . . pt . Only those integers 2l − 1− i coprime to m have A[i] = 1 at the end of sieving, and their

count is approximately λφ(m)/m= λ (p1−1)(p2−1) · · ·(pt −1)/(p1 p2 · · · pt)6 λ (1/2)(2/3) · · ·(t/(t+1)) =
λ/(t +1). Each primality test takes time O(l3) using the Miller–Rabin algorithm. So the running time of this

stage is O(l4/t).

— Page 3 of 3 —



Use this space for leftover answers and rough work


