CS60082/CS60094 Computational Number Theory, Spring 2010–11

Mid-Semester Test

Maximum marks: 30	Date: February 2011	Duration: 2 hours
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. (a) Let $n = p^2 q$ with p, q distinct odd primes, $p \not\mid (q-1)$ and $q \not\mid (p-1)$. Prove that factoring n is polynomial-time equivalent to computing $\phi(n)$. (3)

(b) Let $n = p^2 q$ with p, q odd primes satisfying q = 2p + 1. Argue that one can factor n in polynomial time. (3)

- **2.** Let a, b, c be non-zero integers, and d = gcd(a, b).
 - (a) Prove that the equation

$$ax + by = c \tag{(*)}$$

is solvable in *integer values* of x, y if and only if $d \mid c$.

(3)

(b) Suppose that $d \mid c$, and (s, t) is a solution of Eqn (*). Prove that all the solutions of Eqn (*) can be given as (s + k(b/d), t - k(a/d)) for all $k \in \mathbb{Z}$. Describe how one solution (s, t) can be efficiently computed. (3)

(c) Compute all the (integer) solutions of the equation 21x + 15y = 60.

(3)

3. Let p be an odd prime, $a \in \mathbb{Z}_p^*$, and $e \in \mathbb{N}$. Prove that the multiplicative order of 1 + ap modulo p^e is p^{e-1} . (**Remark:** This result can be used to obtain primitive roots modulo p^e .) (6)

(b) Using the irreducible polynomial f(x) of Part (a), represent the finite field $\mathbb{F}_{361} = \mathbb{F}_{19^2}$ as $\mathbb{F}_{19}(\theta)$, where $f(\theta) = 0$. Compute $(2\theta + 3)^{11}$ in this representation of \mathbb{F}_{361} using the left-to-right square-andmultiply exponentiation algorithm. Show your calculations. (6)