$\qquad$ Name:
[ Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. (a) Let $n=p^{2} q$ with $p, q$ distinct odd primes, $p \not \backslash(q-1)$ and $q \not \backslash(p-1)$. Prove that factoring $n$ is polynomial-time equivalent to computing $\phi(n)$.
(b) Let $n=p^{2} q$ with $p, q$ odd primes satisfying $q=2 p+1$. Argue that one can factor $n$ in polynomial time.
2. Let $a, b, c$ be non-zero integers, and $d=\operatorname{gcd}(a, b)$.
(a) Prove that the equation

$$
\begin{equation*}
a x+b y=c \tag{*}
\end{equation*}
$$

is solvable in integer values of $x, y$ if and only if $d \mid c$.
(b) Suppose that $d \mid c$, and $(s, t)$ is a solution of Eqn (*). Prove that all the solutions of Eqn (*) can be given as $(s+k(b / d), t-k(a / d))$ for all $k \in \mathbb{Z}$. Describe how one solution $(s, t)$ can be efficiently computed.
(c) Compute all the (integer) solutions of the equation $21 x+15 y=60$.
3. Let $p$ be an odd prime, $a \in \mathbb{Z}_{p}^{*}$, and $e \in \mathbb{N}$. Prove that the multiplicative order of $1+a p$ modulo $p^{e}$ is $p^{e-1}$.
(Remark: This result can be used to obtain primitive roots modulo $p^{e}$.)
4. (a) Which of the polynomials $x^{2} \pm 7$ is irreducible modulo 19? Justify.
(b) Using the irreducible polynomial $f(x)$ of Part (a), represent the finite field $\mathbb{F}_{361}=\mathbb{F}_{19^{2}}$ as $\mathbb{F}_{19}(\theta)$, where $f(\theta)=0$. Compute $(2 \theta+3)^{11}$ in this representation of $\mathbb{F}_{361}$ using the left-to-right square-andmultiply exponentiation algorithm. Show your calculations.

