CS60082/CS60094 Computational Number Theory, Spring 2010–11

Mid-Semester Test

Maximum marks: 30	Date: February 2011	Duration: 2 hours
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. (a) Let $n = p^2 q$ with p, q distinct odd primes, $p \not\mid (q-1)$ and $q \not\mid (p-1)$. Prove that factoring n is polynomial-time equivalent to computing $\phi(n)$. (3)

Solution We have $n = p^2 q$ and $\phi(n) = p(p-1)(q-1)$. If p, q are known, we can compute $\phi(n)$ in polynomial time. Conversely, if $\phi(n)$ is known, we compute $p = \gcd(n, \phi(n))$ and obtain $q = n/p^2$.

(b) Let $n = p^2 q$ with p, q odd primes satisfying q = 2p + 1. Argue that one can factor n in polynomial time. (3)

Solution Substituting q = 2p + 1 gives $p^2(2p + 1) - n = 0$, a cubic equation in the variable p. One can use a standard numerical method (like the Newton-Raphson method) to solve for p. One may use integer calculations only. If one chooses to use floating-point calculations instead, one should work with a precision of $\Theta(\log n)$ bits.

- **2.** Let a, b, c be non-zero integers, and d = gcd(a, b).
 - (a) Prove that the equation

$$ax + by = c \tag{(*)}$$

is solvable in *integer values* of x, y if and only if $d \mid c$.

Solution [If] By Bézout's theorem, au + bv = d for some integers u, v. Let c = ld. But then a(lu) + b(lv) = c, that is, Eqn (*) has a solution (lu, lv).

[Only if] If (s, t) is a solution of Eqn (*), then as + bt = c. Now, d divides both a and b, that is, as + bt too, that is, $d \mid c$.

(b) Suppose that $d \mid c$, and (s, t) is a solution of Eqn (*). Prove that all the solutions of Eqn (*) can be given as (s + k(b/d), t - k(a/d)) for all $k \in \mathbb{Z}$. Describe how one solution (s, t) can be efficiently computed. (3)

Solution If (s', t') is another solution of Eqn (*), we have as + bt = c = as' + bt', that is, (a/d)(s' - s) = (b/d)(t - t'). But gcd(a/d, b/d) = 1, so (b/d) | (s' - s), that is, s' - s = k(b/d) for some $k \in \mathbb{Z}$. But then t - t' = k(a/d). Therefore, it suffices to determine one solution (s, t) of Eqn (*). By an extended gcd algorithm, compute u, v such that au + bv = d. Compute l = c/d = c/gcd(a.b). Take s = lu and t = lv.

(c) Compute all the (integer) solutions of the equation 21x + 15y = 60.

(3)

(3)

Solution We have $gcd(21, 15) = 3 = 21 \times 3 + 15 \times (-4)$, so $60 = 20 \times 3 = 21 \times 60 + 15 \times (-80)$, that is, all the solutions of 21x + 15y = 60 are (60 + k(15/3), -80 - k(21/3)) = (60 + 5k, -80 - 7k) for all $k \in \mathbb{Z}$.

3. Let p be an odd prime, $a \in \mathbb{Z}_p^*$, and $e \in \mathbb{N}$. Prove that the multiplicative order of 1 + ap modulo p^e is p^{e-1} . (**Remark:** This result can be used to obtain primitive roots modulo p^e .) (6)

Solution The result being obvious for e = 1, take $e \ge 2$. Let me first prove the following important result.

Lemma: For every $e \ge 2$, we have $(1 + ap)^{P^{e-2}} \equiv 1 + ap^{e-1} \pmod{p^e}$.

Proof We proceed by induction on e. For e = 2, both sides of the congruence are equal to the integer 1 + ap. So assume that the given congruence holds for some $e \ge 2$. We investigate the value of $(1 + ap)^{p^{e-1}}$ modulo p^{e+1} . By the induction hypothesis, $(1 + ap)^{p^{e-2}} = 1 + ap^{e-1} + up^e$ for some integer u. Raising both sides of this equality to the p-th power gives

$$(1+ap)^{p^{e-1}} = (1+ap^{e-1}+up^{e})^{p}$$

= $1 + {p \choose 1}(ap^{e-1}+up^{e}) + {p \choose 2}(ap^{e-1}+up^{e})^{2} + \dots + {p \choose p-1}(ap^{e-1}+up^{e})^{p-1} + (ap^{e-1}+up^{e})^{p}$
= $1 + ap^{e} + p^{e+1} \times v$

for some integer v (since p is prime so that $p|\binom{p}{k}$ for $1 \le k \le p-1$, and since the last term in the binomial expansion is divisible by $p^{p(e-1)}$, in which the exponent $p(e-1) \ge e+1$ for all $p \ge 3$ and $e \ge 2$). This completes the proof of the lemma.

Let us now derive the order of $1 + ap \mod p^e$. Using the lemma for e + 1 indicates $(1 + ap)^{p^{e-1}} \equiv 1 + ap^e \pmod{p^{e+1}}$ and, in particular, $(1 + ap)^{p^{e-1}} \equiv 1 \pmod{p^e}$. Therefore, $\operatorname{ord}_{p^e}(1 + ap) \mid p^{e-1}$. The lemma also implies that $(1 + ap)^{p^{e-2}} \not\equiv 1 \pmod{p^e}$ (for *a* is coprime to *p*), that is, $\operatorname{ord}_{p^e}(1 + ap) \not\mid p^{e-2}$. We, therefore, have $\operatorname{ord}_{p^e}(1 + ap) = p^{e-1}$.

Solution Since $\left(\frac{7}{19}\right) = (-1)^{(7-1)(19-1)/4} \left(\frac{19}{7}\right) = -\left(\frac{19}{7}\right) = -\left(\frac{5}{7}\right) = -(-1)^{(5-1)(7-1)/4} \left(\frac{7}{5}\right) = -\left(\frac{7}{5}\right) = -\left(\frac{2}{5}\right) = -(-1) = +1$, we conclude that 7 is a quadratic residue modulo 19. But $19 \equiv 3 \pmod{4}$, so -7 is a quadratic non-residue modulo 19. Thus, $x^2 - 7$ is reducible modulo 19, whereas $x^2 + 7$ is irreducible modulo 19.

(b) Using the irreducible polynomial f(x) of Part (a), represent the finite field $\mathbb{F}_{361} = \mathbb{F}_{19^2}$ as $\mathbb{F}_{19}(\theta)$, where $f(\theta) = 0$. Compute $(2\theta + 3)^{11}$ in this representation of \mathbb{F}_{361} using the left-to-right square-and-multiply exponentiation algorithm. Show your calculations. (6)

Solution We take $f(x) = x^2 + 7$, that is, $\theta^2 + 7 = 0$, that is, $\theta^2 = -7 = 12$. The binary expansion of 11 is $(1011)_2$. Therefore, the left-to-right exponentiation proceeds as follows. The variable "Product" is initialized to 1.

Bit	Operation	Product
1	Sqr	1
	Mul	$2\theta + 3$
0	Sqr	$(2\theta + 3)^2 = 4\theta^2 + 12\theta + 9 = 4 \times 12 + 12\theta + 9 = 12\theta$
1	Sqr	$(12\theta)^2 = 144 \times \theta^2 = 11 \times 12 = 18$
	Mul	$18 \times (2\theta + 3) = 17\theta + 16$
1	Sqr	$(17\theta + 16)^2 = 289\theta^2 + 544\theta + 256 = 4 \times 12 + 12\theta + 9 = 12\theta$
	Mul	$(12\theta)(2\theta + 3) = 24\theta^2 + 36\theta = 5 \times 12 + 17\theta = 17\theta + 3$

We conclude that $(2\theta + 3)^{11} = 17\theta + 3$.