\qquad Name:
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. (a) Let $n=p^{2} q$ with p, q distinct odd primes, $p \not \backslash(q-1)$ and $q \not \backslash(p-1)$. Prove that factoring n is polynomial-time equivalent to computing $\phi(n)$.

Solution We have $n=p^{2} q$ and $\phi(n)=p(p-1)(q-1)$. If p, q are known, we can compute $\phi(n)$ in polynomial time. Conversely, if $\phi(n)$ is known, we compute $p=\operatorname{gcd}(n, \phi(n))$ and obtain $q=n / p^{2}$.
(b) Let $n=p^{2} q$ with p, q odd primes satisfying $q=2 p+1$. Argue that one can factor n in polynomial time.

Solution Substituting $q=2 p+1$ gives $p^{2}(2 p+1)-n=0$, a cubic equation in the variable p. One can use a standard numerical method (like the Newton-Raphson method) to solve for p. One may use integer calculations only. If one chooses to use floating-point calculations instead, one should work with a precision of $\Theta(\log n)$ bits.
2. Let a, b, c be non-zero integers, and $d=\operatorname{gcd}(a, b)$.
(a) Prove that the equation

$$
\begin{equation*}
a x+b y=c \tag{*}
\end{equation*}
$$

is solvable in integer values of x, y if and only if $d \mid c$.

Solution [If] By Bézout's theorem, $a u+b v=d$ for some integers u, v. Let $c=l d$. But then $a(l u)+b(l v)=c$, that is, Eqn (*) has a solution (lu,lv).
[Only if] If (s, t) is a solution of Eqn $(*)$, then $a s+b t=c$. Now, d divides both a and b, that is, $a s+b t$ too, that is, $d \mid c$.
(b) Suppose that $d \mid c$, and (s, t) is a solution of Eqn $(*)$. Prove that all the solutions of Eqn (*) can be given as $(s+k(b / d), t-k(a / d))$ for all $k \in \mathbb{Z}$. Describe how one solution (s, t) can be efficiently computed.

Solution If $\left(s^{\prime}, t^{\prime}\right)$ is another solution of Eqn $(*)$, we have $a s+b t=c=a s^{\prime}+b t^{\prime}$, that is, $(a / d)\left(s^{\prime}-s\right)=(b / d)\left(t-t^{\prime}\right)$. But $\operatorname{gcd}(a / d, b / d)=1$, so $(b / d) \mid\left(s^{\prime}-s\right)$, that is, $s^{\prime}-s=k(b / d)$ for some $k \in \mathbb{Z}$. But then $t-t^{\prime}=k(a / d)$. Therefore, it suffices to determine one solution (s, t) of Eqn $(*)$. By an extended gcd algorithm, compute u, v such that $a u+b v=d$. Compute $l=c / d=c / \operatorname{gcd}(a . b)$. Take $s=l u$ and $t=l v$.
(c) Compute all the (integer) solutions of the equation $21 x+15 y=60$.

Solution We have $\operatorname{gcd}(21,15)=3=21 \times 3+15 \times(-4)$, so $60=20 \times 3=21 \times 60+15 \times(-80)$, that is, all the solutions of $21 x+15 y=60$ are $(60+k(15 / 3),-80-k(21 / 3))=(60+5 k,-80-7 k)$ for all $k \in \mathbb{Z}$.
3. Let p be an odd prime, $a \in \mathbb{Z}_{p}^{*}$, and $e \in \mathbb{N}$. Prove that the multiplicative order of $1+a p$ modulo p^{e} is p^{e-1}.
(Remark: This result can be used to obtain primitive roots modulo p^{e}.)

Solution The result being obvious for $e=1$, take $e \geqslant 2$. Let me first prove the following important result.
Lemma: For every $e \geqslant 2$, we have $(1+a p)^{P^{e-2}} \equiv 1+a p^{e-1}\left(\bmod p^{e}\right)$.
Proof We proceed by induction on e. For $e=2$, both sides of the congruence are equal to the integer $1+a p$. So assume that the given congruence holds for some $e \geqslant 2$. We investigate the value of $(1+a p)^{p^{e-1}}$ modulo p^{e+1}. By the induction hypothesis, $(1+a p)^{p^{e-2}}=1+a p^{e-1}+u p^{e}$ for some integer u. Raising both sides of this equality to the p-th power gives

$$
\begin{aligned}
(1+a p)^{p^{e-1}}= & \left(1+a p^{e-1}+u p^{e}\right)^{p} \\
= & 1+\binom{p}{1}\left(a p^{e-1}+u p^{e}\right)+\binom{p}{2}\left(a p^{e-1}+u p^{e}\right)^{2}+\cdots+ \\
& \binom{p}{p-1}\left(a p^{e-1}+u p^{e}\right)^{p-1}+\left(a p^{e-1}+u p^{e}\right)^{p} \\
= & 1+a p^{e}+p^{e+1} \times v
\end{aligned}
$$

for some integer v (since p is prime so that $p\binom{p}{k}$ for $1 \leqslant k \leqslant p-1$, and since the last term in the binomial expansion is divisible by $p^{p(e-1)}$, in which the exponent $p(e-1) \geqslant e+1$ for all $p \geqslant 3$ and $e \geqslant 2$). This completes the proof of the lemma.
Let us now derive the order of $1+a p$ modulo p^{e}. Using the lemma for $e+1$ indicates $(1+a p)^{p^{e-1}} \equiv$ $1+a p^{e}\left(\bmod p^{e+1}\right)$ and, in particular, $(1+a p)^{p^{e-1}} \equiv 1\left(\bmod p^{e}\right)$. Therefore, $\operatorname{ord}_{p^{e}}(1+a p) \mid p^{e-1}$. The lemma also implies that $(1+a p)^{p^{e-2}} \not \equiv 1\left(\bmod p^{e}\right)($ for a is coprime to $p)$, that is, $\operatorname{ord}_{p^{e}}(1+a p) \nmid p^{e-2}$. We, therefore, have $\operatorname{ord}_{p^{e}}(1+a p)=p^{e-1}$.
4. (a) Which of the polynomials $x^{2} \pm 7$ is irreducible modulo 19? Justify.

Solution Since $\left(\frac{7}{19}\right)=(-1)^{(7-1)(19-1) / 4}\left(\frac{19}{7}\right)=-\left(\frac{19}{7}\right)=-\left(\frac{5}{7}\right)=-(-1)^{(5-1)(7-1) / 4}\left(\frac{7}{5}\right)=-\left(\frac{7}{5}\right)=-\left(\frac{2}{5}\right)=$ $-(-1)=+1$, we conclude that 7 is a quadratic residue modulo 19 . But $19 \equiv 3(\bmod 4)$, so -7 is a quadratic non-residue modulo 19. Thus, $x^{2}-7$ is reducible modulo 19 , whereas $x^{2}+7$ is irreducible modulo 19 .
(b) Using the irreducible polynomial $f(x)$ of Part (a), represent the finite field $\mathbb{F}_{361}=\mathbb{F}_{19^{2}}$ as $\mathbb{F}_{19}(\theta)$, where $f(\theta)=0$. Compute $(2 \theta+3)^{11}$ in this representation of \mathbb{F}_{361} using the left-to-right square-andmultiply exponentiation algorithm. Show your calculations.

Solution We take $f(x)=x^{2}+7$, that is, $\theta^{2}+7=0$, that is, $\theta^{2}=-7=12$. The binary expansion of 11 is $(1011)_{2}$. Therefore, the left-to-right exponentiation proceeds as follows. The variable "Product" is initialized to 1.

Bit	Operation	Product
1	Sqr	1
	Mul	$2 \theta+3$
0	Sqr	$(2 \theta+3)^{2}=4 \theta^{2}+12 \theta+9=4 \times 12+12 \theta+9=12 \theta$
1	Sqr	$(12 \theta)^{2}=144 \times \theta^{2}=11 \times 12=18$
	Mul	$18 \times(2 \theta+3)=17 \theta+16$
1	Sqr	$(17 \theta+16)^{2}=289 \theta^{2}+544 \theta+256=4 \times 12+12 \theta+9=12 \theta$
	Mul	$(12 \theta)(2 \theta+3)=24 \theta^{2}+36 \theta=5 \times 12+17 \theta=17 \theta+3$

We conclude that $(2 \theta+3)^{11}=17 \theta+3$.

