\qquad Name: \qquad
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. In the Hensel lifting procedure discussed in the class, we lifted solutions of polynomial congruences of the form $f(x) \equiv 0\left(\bmod p^{e}\right)$ to the solutions of $f(x) \equiv 0\left(\bmod p^{e+1}\right)$. In this exercise, we investigate lifting the solutions of $f(x) \equiv 0\left(\bmod p^{e}\right)$ to solutions of $f(x) \equiv 0\left(\bmod p^{2 e}\right)$, that is, the exponent in the modulus doubles every time (instead of getting incremented by only 1).
(a) Let $f(x) \in \mathbb{Z}[x], e \in \mathbb{N}$, and ξ a solution of $f(x) \equiv 0\left(\bmod p^{e}\right)$. Write $\xi^{\prime}=\xi+k p^{e}$. Show how we can compute all values of k for which ξ^{\prime} satisfies $f\left(\xi^{\prime}\right) \equiv 0\left(\bmod p^{2 e}\right)$.
(b) It is given that the only solution of $2 x^{3}+4 x^{2}+3 \equiv 0(\bmod 25)$ is $14(\bmod 25)$. Using the lifting procedure of Part (a), compute all the solutions of $2 x^{3}+4 x^{2}+3 \equiv 0(\bmod 625)$.
2. (a) Compute the infinite simple continued fraction expansion of $\sqrt{3}$.
(b) For all $k \geqslant 1$, write $a_{k}+b_{k} \sqrt{3}=(2+\sqrt{3})^{k}$ with a_{k}, b_{k} integers. Prove that for all $n \geqslant 0$, the $(2 n+1)$-th convergent of $\sqrt{3}$ is $r_{2 n+1}=a_{n+1} / b_{n+1}$.
(Remark: a_{k}, b_{k} for $k \geqslant 1$ constitute all the non-zero solutions of the Pell equation $a^{2}-3 b^{2}=1$. Proving this requires some exposure to algebraic number theory.)
