CS60082/CS60094 Computational Number Theory, Spring 2010–11

Class Test 1

Maximum marks: 20	Date: February 16, 2011 (6:00-7:00pm)	Duration: 1 hour
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

1. In the Hensel lifting procedure discussed in the class, we lifted solutions of polynomial congruences of the form $f(x) \equiv 0 \pmod{p^e}$ to the solutions of $f(x) \equiv 0 \pmod{p^{e+1}}$. In this exercise, we investigate lifting the solutions of $f(x) \equiv 0 \pmod{p^e}$ to solutions of $f(x) \equiv 0 \pmod{p^{2e}}$, that is, the exponent in the modulus doubles every time (instead of getting incremented by only 1).

(a) Let $f(x) \in \mathbb{Z}[x]$, $e \in \mathbb{N}$, and ξ a solution of $f(x) \equiv 0 \pmod{p^e}$. Write $\xi' = \xi + kp^e$. Show how we can compute all values of k for which ξ' satisfies $f(\xi') \equiv 0 \pmod{p^{2e}}$. (5)

(b) It is given that the only solution of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{25}$ is 14 (mod 25). Using the lifting procedure of Part (a), compute all the solutions of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{625}$. (5)

(5)

(b) For all $k \ge 1$, write $a_k + b_k \sqrt{3} = (2 + \sqrt{3})^k$ with a_k, b_k integers. Prove that for all $n \ge 0$, the (2n+1)-th convergent of $\sqrt{3}$ is $r_{2n+1} = a_{n+1}/b_{n+1}$. (5)

(**Remark:** a_k, b_k for $k \ge 1$ constitute all the non-zero solutions of the Pell equation $a^2 - 3b^2 = 1$. Proving this requires some exposure to algebraic number theory.)