\qquad Name: \qquad
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. In the Hensel lifting procedure discussed in the class, we lifted solutions of polynomial congruences of the form $f(x) \equiv 0\left(\bmod p^{e}\right)$ to the solutions of $f(x) \equiv 0\left(\bmod p^{e+1}\right)$. In this exercise, we investigate lifting the solutions of $f(x) \equiv 0\left(\bmod p^{e}\right)$ to solutions of $f(x) \equiv 0\left(\bmod p^{2 e}\right)$, that is, the exponent in the modulus doubles every time (instead of getting incremented by only 1).
(a) Let $f(x) \in \mathbb{Z}[x], e \in \mathbb{N}$, and ξ a solution of $f(x) \equiv 0\left(\bmod p^{e}\right)$. Write $\xi^{\prime}=\xi+k p^{e}$. Show how we can compute all values of k for which ξ^{\prime} satisfies $f\left(\xi^{\prime}\right) \equiv 0\left(\bmod p^{2 e}\right)$.

Solution Let $f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$. The binomial theorem with the substitution $x=\xi^{\prime}$ gives

$$
\begin{aligned}
f\left(\xi^{\prime}\right) & =a_{d}\left(\xi+k p^{e}\right)^{d}+a_{d-1}\left(\xi+k p^{e}\right)^{d-1}+\cdots+a_{1}\left(\xi+k p^{e}\right)+a_{0} \\
& =f(\xi)+k p^{e} f^{\prime}(\xi)+p^{2 e} \times t
\end{aligned}
$$

for some integer t. The condition $f\left(\xi^{\prime}\right) \equiv 0\left(\bmod p^{2 e}\right)$ implies that $f(\xi)+k p^{e} f^{\prime}(\xi) \equiv 0\left(\bmod p^{2 e}\right)$, that is, $f^{\prime}(\xi) k \equiv-\left(\frac{f(\xi)}{p^{e}}\right)\left(\bmod p^{e}\right)$. Each solution of this linear congruence modulo p^{e} gives a lifted root ξ^{\prime} of $f(x)$ modulo $p^{2 e}$.
(b) It is given that the only solution of $2 x^{3}+4 x^{2}+3 \equiv 0(\bmod 25)$ is $14(\bmod 25)$. Using the lifting procedure of Part (a), compute all the solutions of $2 x^{3}+4 x^{2}+3 \equiv 0(\bmod 625)$.

Solution Here, $f(x)=2 x^{3}+4 x^{2}+3$, so $f^{\prime}(x)=6 x^{2}+8 x$. For $p=5, e=2$ and $\xi=14$, we have $f(\xi)=2 \times 14^{3}+4 \times 14^{2}+3=6275$, that is, $f(\xi) / 25 \equiv 251 \equiv 1(\bmod 25)$. Also, $f^{\prime}(\xi) \equiv 6 \times 14^{2}+8 \times 14 \equiv$ $1288 \equiv 13(\bmod 25)$. Thus, we need to solve $13 k \equiv-1(\bmod 25)$. Since $13^{-1} \equiv 2(\bmod 25)$, we have $k \equiv-2 \equiv 23(\bmod 25)$. It follows that the only solution of $2 x^{3}+4 x^{2}+3 \equiv 0(\bmod 625)$ is $14+23 \times 25 \equiv 589(\bmod 625)$.
2. (a) Compute the infinite simple continued fraction expansion of $\sqrt{3}$.

Solution We have the following sequence of computations:

$$
\begin{aligned}
& \xi_{0}=\sqrt{3}, \quad a_{0}=\left\lfloor\xi_{0}\right\rfloor=1, \\
& \xi_{1}=1 /\left(\xi_{0}-a_{0}\right)=1 /(-1+\sqrt{3})=(1+\sqrt{3}) / 2, \quad a_{1}=\left\lfloor\xi_{1}\right\rfloor=1, \\
& \xi_{2}=1 /\left(\xi_{1}-a_{1}\right)=2 /(-1+\sqrt{3})=1+\sqrt{3}, \quad a_{2}=\left\lfloor\xi_{2}\right\rfloor=2, \\
& \xi_{3}=1 /\left(\xi_{2}-a_{2}\right)=1 /(-1+\sqrt{3})=(1+\sqrt{3}) / 2, \quad a_{3}=\left\lfloor\xi_{3}\right\rfloor=1,
\end{aligned}
$$

It follows that $\sqrt{3}=\langle 1,1,2,1,2,1,2, \ldots\rangle=\langle 1, \overline{1,2}\rangle$.
(b) For all $k \geqslant 1$, write $a_{k}+b_{k} \sqrt{3}=(2+\sqrt{3})^{k}$ with a_{k}, b_{k} integers. Prove that for all $n \geqslant 0$, the $(2 n+1)$-th convergent of $\sqrt{3}$ is $r_{2 n+1}=a_{n+1} / b_{n+1}$.

Solution Let $\zeta_{k}=\langle\underbrace{1,2,1,2, \ldots, 1,2}, 1\rangle$. It suffices to show that $\zeta_{k}=\frac{b_{k+1}}{a_{k+1}-b_{k+1}}$ for all $k \geqslant 0$. We proceed by 1,2 repeated k times induction on k. For $k=0$, we have $a_{1}=2$ and $b_{1}=1$, whereas $\zeta_{0}=\langle 1\rangle=1=\frac{1}{2-1}=\frac{b_{1}}{a_{1}-b_{1}}$. So assume that $k \geqslant 0$ and $\zeta_{k}=\frac{b_{k+1}}{a_{k+1}-b_{k+1}}$. But then $\zeta_{k+1}=\left\langle 1,2, \zeta_{k}\right\rangle=1+\frac{1}{2+\frac{1}{\zeta_{k}}}=1+\frac{1}{2+\frac{a_{k+1}-b_{k+1}}{b_{k+1}}}=$ $1+\frac{b_{k+1}}{a_{k+1}+b_{k+1}}=\frac{a_{k+1}+2 b_{k+1}}{a_{k+1}+b_{k+1}}$. On the other hand, $a_{k+2}+b_{k+2} \sqrt{3}=(2+\sqrt{3})\left(a_{k+1}+b_{k+1} \sqrt{3}\right)=$ $\left(2 a_{k+1}+3 b_{k+1}\right)+\left(a_{k+1}+2 b_{k+1}\right) \sqrt{3}$, that is, $a_{k+2}=2 a_{k+1}+3 b_{k+1}$ and $b_{k+2}=a_{k+1}+2 b_{k+1}$. Consequently, $\frac{b_{k+2}}{a_{k+2}-b_{k+2}}=\frac{a_{k+1}+2 b_{k+1}}{a_{k+1}+b_{k+1}}=\zeta_{k+1}$. This completes the inductive proof.
(Remark: a_{k}, b_{k} for $k \geqslant 1$ constitute all the non-zero solutions of the Pell equation $a^{2}-3 b^{2}=1$. Proving this requires some exposure to algebraic number theory.)

