CS60094 Computational Number Theory

Mid-Semester Test

Maximum marks: 30							February 26, 2010	Duration: 2 hours
Roll No							Name	

[This test is open-notes. Answer all questions. Be brief and precise.]

1 Suppose that $gcd(r_0, r_1)$ is computed by the repeated Euclidean division algorithm. Suppose also that $r_0 > r_1 > 0$. Let r_{i+1} denote the remainder obtained by the *i*-th division (that is, in the *i*-th iteration of the Euclidean loop). So the computation proceeds as $gcd(r_0, r_1) = gcd(r_1, r_2) = gcd(r_2, r_3) = \cdots$ with $r_0 > r_1 > r_2 > \cdots > r_k > r_{k+1} = 0$ for some $k \ge 1$.

(a) If the computation of $gcd(r_0, r_1)$ requires exactly k Euclidean divisions, show that $r_0 \ge F_{k+2}$ and $r_1 \ge F_{k+1}$. Here, F_n is the n-th Fibonacci number: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. (4)

Solution For each *i* in the range $2 \le i \le k+1$, we have $r_{i-2} = q_i r_{i-1} + r_i$. Since $r_{i-2} > r_{i-1}$, we have $q_i \ge 1$, so $r_{i-2} \ge r_{i-1} + r_i$. Moreover, $r_k \ne 0$, that is, $r_k \ge 1 = F_2$, and $r_{k-1} > r_k$, that is, $r_{k-1} \ge 2 = F_3$. But then $r_{k-2} \ge r_{k-1} + r_k \ge F_3 + F_2 = F_4$, $r_{k-3} \ge r_{k-2} + r_{k-1} \ge F_4 + F_3 = F_5$, and so on. Proceeding in this way, we can show that $r_1 \ge F_{k+1}$, and $r_0 \ge F_{k+2}$.

(b) Modify the Euclidean gcd algorithm slightly so as to ensure that $r_i \leq \frac{1}{2}r_{i-1}$ for $i \geq 2$. Here, r_i need not be the remainder $r_{i-2} \operatorname{rem} r_{i-1}$. (4)

Solution Compute $r_i = r_{i-2} \operatorname{rem} r_{i-1}$, where $0 \leq r_i \leq r_{i-1} - 1$. If $r_i > \frac{1}{2}r_{i-1}$, replace r_i by $r_{i-1} - r_i$. The correctness of this variant is based on the fact that $\operatorname{gcd}(r_{i-1}, r_i) = \operatorname{gcd}(r_{i-1}, -r_i) = \operatorname{gcd}(r_{i-1}, r_{i-1} - r_i)$.

(c) Explain the speedup produced by the modified algorithm. You may assume that $F_n \approx \frac{1}{\sqrt{5}}\rho^n$, where $\rho = \frac{1+\sqrt{5}}{2} = 1.6180339887...$ is the golden ratio. (4)

Solution In the original Euclidean algorithm, we have $r_1 \ge F_{k+1} \approx \frac{1}{\sqrt{5}}\rho^{k+1}$, that is, $k \le -1 + (\log \sqrt{5}r_1) / \log \rho$. For the modified algorithm, let k' denote the number of iterations. We have $r_1 \ge 2r_2 \ge 2^2r_3 \ge \cdots \ge 2^{k'-1}r_{k'} \ge 2^{k'-1}$, that is, $k' \le 1 + \log(r_1)/\log(2)$. Since $2 > \rho$, the modified algorithm has the potential of reducing the number of iterations of the Euclidean loop by a factor of $\log 2 / \log \rho$.

- **2** Represent $\mathbb{F}_{64} = \mathbb{F}_{2^6}$ as $\mathbb{F}_2(\theta)$ with $\theta^6 + \theta^3 + 1 = 0$.
 - (a) Find all the conjugates of θ (over \mathbb{F}_2 as polynomials in θ of degrees < 6).

(4)

Solution The conjugates of θ are

 Solution It suffices to compute θ^h only for h|63. Now, $\theta \neq 1$, $\theta^3 \neq 1$, $\theta^7 = \theta(\theta^3 + 1) = \theta^4 + \theta \neq 1$, and $\theta^9 = \theta^3(\theta^3 + 1) = \theta^6 + \theta^3 = 1$. That is, the order of θ is 9, that is, θ is not a primitive element of \mathbb{F}_{64}^* .

Alternatively, by Part (a), $\theta^{32} = \theta^5$, that is, $\theta^{27} = 1$, that is, ord θ divides 27 and so is smaller that 64 - 1 = 63.

(c) What is the minimal polynomial of θ^3 over \mathbb{F}_2 ?

(4)

Solution We have $\theta^6 + \theta^3 + 1 = 0$, that is, $(\theta^3)^2 + (\theta^3) + 1 = 0$, that is, $f_{\theta^3,2}(x) = x^2 + x + 1$. If you choose, you may go as computers would do, that is, write $\alpha = \theta^3$, then show that $\alpha^2 = \theta^3 + 1$ and $\alpha^4 = \theta^6 + 1 = \theta^3 = \alpha$, so that $f_{\theta^3,2}(x) = (x - \alpha)(x - \alpha^2) = (x + \theta^3)(x + \theta^3 + 1) = x^2 + x + 1$. 3 Let p be a prime congruent to 3 modulo 4, and a the last four digits of your roll number. You may assume that p /a. Prove that the congruence y² ≡ x³ + ax (mod p) has exactly p solutions for (x, y) modulo p. (8)

Solution Guess what! The result does not depend upon your roll number. So I work with any arbitrary integer a with $p \nmid a$. Indeed, the condition $p \nmid a$ is also not necessary for this exercise, but e-mails require this condition.

If $x \equiv 0 \pmod{p}$, the only solution for y in the given congruence is 0.

So consider $x \not\equiv 0 \pmod{p}$. In this case, x and -x are distinct modulo p. I will now show that for the pair of values $\pm x$, we have exactly two solutions of the given congruence. If $x^2 + a \equiv 0 \pmod{p}$, these two solutions are (x, 0) and (-x, 0). If not, we look at the Legendre symbols $\left(\frac{x^3+ax}{p}\right) = \left(\frac{x}{p}\right) \left(\frac{x^2+a}{p}\right)$ and $\left(\frac{(-x)^3+a(-x)}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{x}{p}\right) \left(\frac{x^2+a}{p}\right) = -\left(\frac{x^3+ax}{p}\right)$, where the last equality follows from the fact that $\left(\frac{-1}{p}\right) = -1$ for a prime $p \equiv 3 \pmod{4}$. It then follows that exactly one of $\pm x$ yields exactly two solutions (for y) of the given congruence, whereas the other leads to no solutions (for y).

That's all!

(**Remark:** Because of its usability in e-mails, this is an important congruence for computer engineers. Indeed, it is this number of solutions, that is the source of all its importance :--)